Интернет. Настройки. Тарифы. Телефон. Услуги

Пространственное звучание (3D-звук). Как работает звук? Проверка эффектов от включения функции Windows Sonic

Все права в отношении данного документа принадлежат автору. Воспроизведение данного текста или его части разрешается только с письменного разрешения автора.

Ч то такое трехмерный звук и почему по этому поводу возникает так много споров? Как соотносится понятие "трехмерное, пространственное звучание" со способностью человека воспринимать звук двумя ушами? Эти вопросы часто задают себе как пользователи так и профессионалы. Дело в том, что повсеместное использование понятий 3D (3D графика, 3D звук) вносят сумятицу и неразбериху в головы простых пользователей. Зачастую эти понятия используются, мягко говоря, не совсем уместно, что вносит дополнительный раздор в их употребление и правильное понимание. 3D графика - тема не этой статьи. Здесь же мы остановимся на трехмерном звуке.

Реализация пространственного звучания (3D звука) в том или ином виде, применительно к компьютерной технике, используется для придания естественности звуку в компьютерных играх или фильмах, для создания полного ощущения погружения в процесс игры или просмотра фильма. Такая постановка задачи делает недостаточным использование обычного стереофонического звучания. Это связано с тем, что стерео сигнал, приходящий к слушателю от двух физических источников звука, не обеспечивает объемного звучания, а определяет расположение мнимых (слышимых) источников лишь в той плоскости, в которой расположены реальные (физические) источники звука. Кстати, как ни парадоксально, "stereophonic" на самом деле обозначает "трехмерный звук" (от греч. "stereos" - пространственный, трехмерный, цельный). Таким образом, обычного стерео сигнала не достаточно для создания полного реализма звучания, когда источники звука могут находиться в трехмерном пространстве. Также заблуждением является мысль, что объемное звучание обеспечивается квадрофонической системой (два источника перед слушателем и два сзади). Дело в том, что также, как и в стереофонической системе, здесь все четыре источника находятся в одной плоскости, что не позволяет создать полное ощущение трехмерного звучания.

В целом можно обозначить три основных способа реализации пространственного звучания:

расширение стерео базы (Stereo Expansion) - специальная обработка уже имеющегося стерео сигнала и, таким образом, расширение кажущегося звукового поля (имитация расширения расстояния между источниками);

позиционирование звучания (Positional 3D Audio) - оперирование с множеством отдельных звуковых потоков и расположение каждого из них в пространстве вокруг слушателя;

виртуальный (мнимый) окружающий звук (Virtual Surround Sound) - использование определенного числа звуковых потоков с целью воспроизведения истинного звучания с помощью ограниченного числа физических источников звука.

Что это все означает на практике? На практике это означает, что метод расширения стерео базы относительно прост в реализации и очень часто находит применение в стерео фонической бытовой технике. Однако, в той же степени, на сколько проста его реализация, сам метод не дает ощущения "трехмерного звучания" в том понимании, в котором мы его себе представляем, по причине обеспечения звучания лишь в одной плоскости. Не достаточно также и применения так называемого панорамирования. Панорамирование (panning) - это управление уровнем сигнала в каналах, в не зависимости от частоты сигнала. Панорамирование позволяет создавать иллюзию перемещения мнимого источника сигнала где-то между физическими источниками (разумеется, в одной с ними плоскости).

Для создания более или менее реалистичного объемного звучания необходимо что-то принципиально другое. Попытаемся в этом разобраться.

Как ни странно, но вся проблема в устройстве слухового аппарата человека. Оказывается, что он на столько не совершенен, что даже в реальной жизни мы можем столкнуться с трудностями, связанными с неточностью восприятия звуковых сигналов и определения их пространственного месторасположения. Все дело в том, что все мы живем на планете Земля и все время существования человека его основная пища и враги находились в плоскости, параллельной земле. Поэтому, два уха, расположенные по обеим сторонам головы, позволяют нам определять расположение источников звука только лишь в горизонтальной плоскости (бинауральный эффект). При этом мы очень плохо различаем звук идущий спереди и сзади. Способность оценки человеческим ухом (слуховым аппаратом) расположения источников звука в вертикальной плоскости также крайне ограничена. Кроме того, тело слушателя, в частности, голова, уши и туловище, является, как известно, препятствием на пути распространения звуковых колебаний. Взаимодействуя с телом звук отражается, затухает и искажается, что приводит к восприятию слушателем не исходного, а измененного звучания. Все это создает трудности имитации пространственного звучания.

Что же происходит внутри нас? Приемником сигнала в человеке является барабанная перепонка, скрытая ушной раковиной. При восприятии звука, мозг как бы декодирует получаемый от барабанной перепонки сигнал, интерпретируя его определенным образом для правильного определения пространственного местоположения источника/ков звука. И именно это рассуждение взято в основу всех существующих на сегодня технологий создания пространственного звучания.

Оказывается, если произвести специальную обработку звукового потока с учетом максимального числа особенностей восприятия звука слуховым аппаратом, то, возможно, удастся имитировать пространственное звучание даже с использованием всего двух источников (колонок или наушников). Необходимо подчеркнуть, что любой алгоритм создания 3D звука реализовывается с помощью алгоритмов фильтрации (оперирующих с амплитудой и частотой звукового сигнала) той или иной сложности, которые определенным образом "обманывают" слуховой аппарат, "заставляя его считать", что то, что он слышит, расположено в трехмерном пространстве вокруг слушателя.

Одним из таких алгоритмов (способов) является HRTF - Head Related Transfer Function. Посредством этого алгоритма звук можно преобразовать специальным образом, что обеспечит прекрасное 3D звучание, рассчитанное на прослушивание в наушниках (пояснение этому можно найти чуть ниже). Следует отметить, что HRTF (в том или ином виде) является основой создания множества существующих на сегодня методов создания объемного звучания. Однако мы не даром заговорили о HRTF как об одном из алгоритмов, так как этот алгоритм в чистом виде (впрочем, как и все остальные) не является единственным и совершенным. Все дело в том, что HRTF неодинаков для различного слушателя и, тем более, для различных положений головы (если речь идет о воспроизведении не через наушники). Безусловно, есть способы найти сбалансированный HRTF для всех слушателей, но такой подход не обеспечивает высокочеткое восприятие звука для каждого, и уж тем более не решает проблему с поворотами головы. Наверное, именно поэтому стандарт на HRTF не существует до сих пор.

Конечно, если в качестве источников звука будут выступать наушники, закрепленные на голове слушателя, то их расположение относительно головы слушателя не будет изменяться, какие бы повороты головы не производились. В этом случае, как мы сказали, с использованием HRTF может быть достигнуто высококачественное пространственное звучание. В случае же, если источниками являются, например, две колонки, то, кроме всего прочего, для создания естественного пространственного звучания необходимо, в частности, точно отслеживать повороты слушателем головы для соответствующей корректировки сигналов от каждого физического источника. Кроме того, при воспроизведении звука через наушники, сигнал от каждого канала попадает только в соответствующее ухо, а при воспроизведении через колонки сигналы могут смешиваться, в результате чего появляются перекрестные искажения. Этот недостаток частично устраняется с помощью специального устройства - бифонического процессора.

Итак, как мы сказали выше, при использовании в качестве источников звука колонок, возникает проблема необходимости расположения слушателя строго в определенной области пространства между источниками звука. Эта область называется Sweet Spot. При отсутствии возможности контролировать положение слушателя в пространстве относительно источников звука при прочих равных условиях, Sweet Spot накладывает строгие ограничения на расположение слушателя. Это значит, что как только слушатель покидает область Sweet Spot, звучание, создаваемое источниками, перестает восприниматься слушателем как пространственное. Поэтому, при создании технологий объемного звучания перед разработчиками возникает проблема расширения области Sweet Spot.

Одним из эффективных методов решения этой проблемы является введение дополнительного третьего источника звука, когда слушатель становится независимым от области Sweet Spot. Трехканальные системы объемного звучания часто используются в бытовой аудио и видео аппаратуре. Существуют также многоканальные (трех-, четырех- и более) расширения этого метода.

Однако наряду с проблемами реализации трехмерного звучания с помощью HRTF, у любой системы звуковоспроизведения есть проблемы другого плана. Так, например, наушники слабо справляются с воспроизведением фронтальных сигналов. При использовании наушников также возникает проблема локализации звукового сигнала внутри головы слушателя, а также эффект бесконечного расширения стерео базы. Конечно, существуют способы борьбы с этими эффектами, однако всех проблем это не решает. Двухканальные системы плохо обеспечивают восприятие слушателем звучания сзади. В реализации многоканальных систем слабым местом является необходимость достаточно точного расположения источников сигнала, потому что как раз это зачастую сделать затруднительно. Кроме того, здесь также существует проблема звучания в одной плоскости.

Таким образом, создание настоящего качественного пространственного звучания затруднено как необходимостью учитывать все особенности слухового аппарата человека, так и необходимостью динамического отслеживания положения слушателя относительно источников звука, а также учета особенностей звукопередачи последних. По этому, сложно сказать, какая схема создания 3D звука более совершенна. Гораздо легче сказать, что все существующие схемы далеки от совершенства, и все технологии 3D звука, построенные на использовании HRTF или других алгоритмов, имеют массу недостатков, так как просто невозможно создать универсальную схему, учитывающую все вышеперечисленные особенности слуха, источников звука и их расположения относительно слушателя.

В качестве справки отметим, что для создания библиотек HRTF используется искусственный манекен KEMAR (Knowles Electronics Manikin for Auditory Research) или специальное "цифровое ухо". В случае использования манекена суть измерений состоит в следующем. В уши манекена встраиваются микрофоны. Звук воспроизводится источниками, расположенными вокруг манекена, а запись производится с микрофонов. В результате, запись от каждого микрофона представляет собой звук, "прослушанный" соответствующим ухом манекена с учетом всех изменений, которые звук претерпел на пути к уху. Расчет HRTF производится с учетом исходного звука и звука, "услышанного" манекеном.

Следует сказать также, что мы рассмотрели лишь одну сторону реализации полноценного пространственного звучания. Дело в том, что на ряду со сложностями, связанными с "правильной" передачей объемности звучания, при создании игр возникают также проблемы корректной имитации различных физических свойств звука (эффектов отражения от различных поверхностей, поглощения и искажения звука). Грамотная реализация этих свойств также коренным образом влияет на ощущение слушателем пространственности звучания. Однако, эта проблема в основном касается аккуратности механизмов, закладываемых разработчиками в игры. Что же касается рассмотренной нами выше проблемы <донесения> трехмерного звука до пользователя (а вернее, до его нервной системы), то она остается не решенной, так как идеальные модели реализации трехмерного звучания еще не найдены.

Совсем недавно можно было наблюдать, как в мир коммерческих и домашних кинотеатров пришло стереокино, а сейчас на очереди уже стоит видео сверхвысокого разрешения 4K. От изображения не отстает и звук: в домашний кинотеатр пришло 3D Audio, полное звуковое окружение зрителя — не только в горизонтальной плоскости, но и в третьем измерении. В английском языке для этого применяется термин immersive, «погружающий».

Глас божий и другие аудиоканалы

Формат Auro-3D был представлен в мае 2006 года бельгийской компанией Galaxy Studios. Первым массовым фильмом, записанным в данном формате, стала лента Red Tails («Красные хвосты»), снятая в 2012 году Джорджем Лукасом. Принципиальное отличие Auro-3D от преобладавших на тот момент форматов Dolby Surround EX и DTS заключалось в том, что кроме традиционных каналов 7.1, расположенных в одной плоскости, разработчики предложили использовать третье измерение — то есть разместить акустические системы (АС) не просто вокруг слушателя, но и сверху, вторым «слоем», под углом в 30 градусов к фронтальным акустическим системам и каналам окружающего звучания.

Дальнейшее усовершенствование формата привело к появлению еще одного «слоя» — над головами слушателей, который символично назвали voice of god («глас божий»). Максимальное количество каналов (не стоит путать с количеством акустических систем) при этом достигло 13.1, то есть фактически стало в два раза больше, чем в применяемых тогда форматах 7.1 и 6.1. Внедрение верхних каналов позволило более точно передать ряд событий в звуковой дорожке фильма, таких как пролеты объектов над зрителями (шум вертолета или реактивного истребителя), атмосферные эффекты (завывание ветра, раскаты грома).


Если потолок расположен слишком низко, акустика будет слишком близко к зрителю. В этом случае Dolby рекомендует использовать специальные акустические системы, работающие «на отражение» от потолка — по утверждению компании, результат будет более качественным.

Объектный подход

Старейший игрок на рынке кинотеатрального звука, компания Dolby Laboratories, использует в своем новом формате Dolby Atmos два «слоя» акустических систем. Первый располагается вокруг слушателя по классической схеме, а второй на потолке — попарно слева и справа. Но самое главное — принципиально новый подход к микшированию саундтреков. Вместо привычного поканального сведения в студии используется метод «объектной» записи. Режиссер работает со звуковыми файлами, указывая место в трехмерном пространстве, откуда эти звуки должны воспроизводиться, когда и с какой громкостью. К примеру, если необходимо воспроизвести шум движущейся машины, то режиссер указывает время появления, уровень громкости, траекторию движения, место и время прекращения звучания «объекта».

Более того, из студии в кинозал звук попадает не в виде записанных дорожек, а как набор звуковых файлов. Эта информация обрабатывается процессором, который в реальном времени каждый раз просчитывает саундтрек фильма с учетом количества АС в зале, их типа и расположения. Благодаря точной калибровке нет привязки к какому-то «типовому» количеству каналов, и можно использовать в разных залах разное количество АС (каждый зал калибруется и настраивается индивидуально) — процессор сам просчитает, как и куда нужно отправить звук для получения оптимальной звуковой панорамы. Максимальное количество одновременно обрабатываемых звуковых «объектов» составляет 128, а количество одновременно поддерживаемых независимых АС — до 64.


Формат Dolby Atmos не привязан к конкретному количеству аудиоканалов. Звуковая картина формируется процессором в реальном времени из «объектов» и по «программе», составленной звукорежиссером фильма. При этом процессор учитывает точное расположение акустических систем, их тип и количество — все это заранее прописывается в настройках при калибровке каждого конкретного зала. Правда, как такой подход реализовать в домашнем кинотеатре, пока не совсем понятно.

Профессионалы и любители

Вслед за появлением в коммерческих кинозалах оба формата трехмерного звука начали завоевание домашнего рынка. Auro-3D стартовал чуть раньше, несколько производителей домашней электроники представили первые процессоры и ресивер с поддержкой формата еще в начале 2014 года. Dolby Laboratories не заставила себя долго ждать, и в середине сентября прошлого года представила весьма доступные решения на базе недорогих ресиверов. Кроме того, в начале 2015 года еще один крупный игрок, американская компания DTS, анонсировала свой формат трехмерного звучания — DTS: X (о котором известно пока только то, что он, как и Dolby Atmos, является объект-но-ориентированным и будет поддержан многими производителями бытовой электроники).

Между тем, коммерческое и домашнее кино в некоторых аспектах имеют серьезные отличия. Бобины с кинопленкой ушли в далекое прошлое, и в кинопрокате в настоящее время практически повсеместно используются цифровые копии фильмов. Саундтрек к фильму «выходит» из сервера в виде потока цифрового аудио с высоким битрейтом и практически без сжатия. Серверы, на которых хранятся фильмы, могут передавать до 16 цифровых каналов таких данных параллельно.


Самый популярный носитель для домашнего кино — Blu-ray диск. Как правило, он содержит саундтрек, записанный в одном из двух самых популярных форматов — DTS HD Master Audio или Dolby True HD. Встречаются и диски, записанные с использованием старых кодеков DTS и Dolby Digital со звуком 2.1 (лево-право и LFE). Если дорожка к фильму изначально была записана в студии в формате 5.1 или 7.1, перенести ее на диск довольно просто, отличие лишь в дополнительной компрессии данных, связанной с ограниченной емкостью цифрового носителя. А как же будут адаптироваться новые форматы Auro-3D и Dolby Atmos при переносе их из профессионального кино в домашний кинозал?

Путь домой

Для Auro-3D перенос будет практически «бесшовным». Если фильм изначально записан в студии в формате 13.1 или 11.1, ровно с таким же количеством каналов он и будет переноситься на диски Blu-ray. Для обратной совместимости в Auro-3D используется специальный алгоритм, который умеет «дописывать» верхние каналы в кодек DTS HD MA, официально поддерживающий максимум 7.1 каналов — например, в левый канал инкапсулируется информация для верхнего левого канала, в центральный — для верхнего центрального и т. д. Если в ресивере или процессоре есть поддержка декодирования кодека Auro-3D, то он «вынет» вложенную информацию и подаст ее на соответствующие каналы. Если нет — просто декодирует данные как обычную дорожку 7.1, пропустив «лишнюю» информацию. Таким образом, диск с фильмом в формате Auro-3D в любом случае будет корректно прочитан любым современным плеером и распознан любым из процессоров или ресиверов, поддерживающих DTS HD MA. А если процессор или ресивер обладает встроенным декодером Auro-3D, то на выходе можно получить саундтрек из 9.1, 11.1 или даже 13.1 каналов. Существует и возможность «апмиксинга» (upmixing) — процессор, умеющий работать с Auro-3D, может пересчитать даже обычную двухканальную стереозапись, скажем, в 13.1.


В Auro-3D используется трехслойное расположение акустических систем и более традиционный подход с многоканальной записью звука. Это обеспечивает отличную обратную совместимость стандарта с текущими форматами и переносимость на домашние системы.

Ситуация с Dolby Atmos в домашнем кинотеатре намного более сложная: процессор в реальном времени обсчитывает довольно большой поток данных и выдает звук на соответствующие акустические каналы (с учетом того, сколько их в конкретной инсталляции). На текущий момент спецификациями Dolby Atmos для домашнего применения предлагается использовать конфигурации АС от 5.1.2 до 7.1.4, где первая цифра — это количество «обычных» каналов: левый-центр-правый-боковые-тылы, вторая — это канал низкочастотных эффектов, а третья — так называемые «верхние» каналы (overhead). При этом единственный процессор для коммерческого применения (Dolby CP850) стоит более миллиона рублей, а стоимость домашних ресиверов с поддержкой Atmos начинается всего от 30−40 тысяч. Тем не менее даже для самых доступных по цене домашних ресиверов заявлены и декодирование, и поддержка «апмиксинга», хотя как именно это сделано, не совсем понятно.

Еще один не очень ясный момент заключается в том, что для правильного обсчета звукового поля необходимо знать точное местоположение всех акустических систем. В коммерческом кинотеатре этот вопрос решается калибровкой аппаратуры, а вот в домашних ресиверах, насколько известно, такой возможности не предусмотрено. Как в таком случае решается вопрос о получении дома полноценного звучания Atmos «как в кино», пока неясно. Правда, формат пока еще не обрел окончательные черты. Несколько производителей процессоров премиум-класса даже отложили выпуск обновлений с поддержкой Dolby Atmos из-за изменений в алгоритме обработки сигнала, вносимых, по их словам, разработчиками Dolby. Так что можно предположить, что в последующих обновлениях Dolby может внести коррективы в процесс обработки звука и/или калибровки системы под конкретное расположение акустических систем.


Вопросы совместимости

Поскольку Auro-3D использует традиционный метод поканального сведения, а Dolby и DTS — объектно-ориентированный монтаж звука, переконвертировать один формат в другой невозможно. Кроме того, построить домашний кинотеатр, умеющий правильно работать со всеми форматами, тоже непросто. Проблема совместимости заключается в различных требованиях к установке акустических систем. В Dolby Atmos используется два «слоя» акустики, а в Auro-3D — три. Можно было бы предположить, что саундтрек Dolby Atmos может быть воспроизведен через часть АС для проигрывания Auro-3D, но вряд ли это будет корректно. Требования для расположения АС весьма жесткие у обоих форматов, а учитывая чувствительность к точному позиционированию для получения плавных переходов, это может стать проблемой для проектировщиков и инсталляторов домашних кинозалов (информации по расположению акустики DTS: X пока нет).


Перспективы

Несмотря на все неясности описания Dolby Atmos, нужно признать, что этот формат имеет больший потенциал, чем Auro-3D. Во‑первых, объектно-ориентированный подход к записи однозначно более перспективен, чем традиционный поканальный. Во вторых, поддержка Dolby Atmos в массовых моделях AV-ресиверов таких фирм, как Yamaha, Pioneer, Onkyo, Integra, Denon, доступна «в базе», в то время как лицензию на Auro3D придется покупать как опциональное программное обновление за $199, что ощутимо для бюджетных моделей.

В более дорогом сегменте процессоров для построения домашних кинозалов о поддержке всех форматов 3D Audio заявили и такие производители, как Trinnov Audio и Datasat Digital, работающие в том числе и на коммерческом кинорынке. Их опыт может весьма благотворно сказаться на реализации Dolby Atmos для домашнего кинотеатра: например, Trinnov для калибровки своих процессоров использует уникальный трехмерный микрофон, позволяющий точно определить место каждой АС в пространстве и применять эти данные для дополнительной коррекции звукового поля.

Редакция благодарит журнал avreport.ru за помощь в подготовке статьи.

По умолчанию Windows Sonic for Headphones отключена, но вы можете включить её для виртуального объемного звука. Эта опция доступна и на Xbox One.

Как включить Windows Sonic

Вы можете легко включить или отключить эту функцию с помощью значка звука в области уведомлений . Щелкните правой кнопкой мыши значок динамика, выберите пространственный звук и выберите Windows Sonic for Headphones , чтобы включить его. Выберите Выключить здесь же, чтобы отключить Windows Sonic.

Если Вы не видите здесь или на панели управления опции для включения пространственного звука, значит ваше звуковое устройство не поддерживает его. Например, эта опция будет недоступна при использовании встроенных динамиков ноутбука.

Вы также можете получить доступ к этой функции из Панели управления . Чтобы запустить его, перейдите на Панель управления Оборудование и звук Звук .

Дважды щелкните устройство воспроизведения, для которого требуется включить Windows Sonic , перейдите на вкладку Пространственный звук и выберите Windows Sonic for Headphones в раскрывающемся списке.

Вы также можете включить Dolby Atmos для наушников в том же выпадающем меню. Это аналогичная технология пространственного звука для наушников, но она использует технологию Dolby и требует покупки в приложения для разблокировки.

Вы также можете включить или отключить параметр на вкладке пространственный звук.

На консоли Xbox One этот параметр находится в меню Система Настройки Экран и звук Аудиовыход . Выберите Windows Sonic для наушников под Headset audio.

Что такое пространственный звук

Это такие же данные, которые получает Dolby Atmos, поэтому Windows Sonic обеспечивает полную поддержку Dolby Atmos в последних версиях Windows 10. В сочетании с приемником и акустической системой с поддержкой Dolby Atmos, Вы будете слышать звуки, словно они исходят из трехмерного пространства – как по вертикали, так и по горизонтали – для улучшения эффекта объемного звучания .

Так, например, если звук идет сверху и справа, относительно вашей позиции в кино, телешоу или видеоигре, потолочный динамик на правой стороне будет издавать этот звук громче и раньше.

Приложение Dolby Access из магазина Windows поможет вам настроить звук домашнего кинотеатра Dolby Atmos на ПК с Windows 10.

Как работает пространственный звук в наушниках

Пространственные данные будут полезны только в том случае, если у вас есть система Dolby Atmos, которая действительно может их использовать. Даже если у вас есть традиционная система объемного звучания 7.1, вы просто получаете нормальный объемный звук с восемью каналами аудио – семь динамиков плюс сабвуфер.

Однако, эти позиционные данные могут обеспечивать пространственный звук в любой паре наушников. Вам просто нужно включить либо «Windows Sonic для наушников», либо «Dolby Atmos для наушников». Оба работают аналогично, но версия Dolby использует технологию Dolby и требует покупки приложения, в то время как Windows Sonic использует только технологию Microsoft и поставляется бесплатно с Windows 10 и Xbox One.

Когда Вы включаете одну из этих функций, ваш ПК с ОС Windows (или Xbox One) будет смешивать звук с использованием позиционных данных, обеспечивая виртуальный пространственный звук . Итак, если вы играете в игру, и звук идёт сверху вашего персонажа и справа, звук будет смешиваться до того, как он будет отправлен в ваши наушники, чтобы вы услышали этот звук как сверху, так и справа.

Эти функции пространственного звука работают только с приложениями, которые предоставляют пространственные данные для Windows.

Как насчет виртуального объемного звука 7.1

При включении Windows Sonic для наушников функция Включить виртуальный объемный звук 7.1 на панели управления звуками также будет включена. На консоли Xbox One эта функция называется Использовать виртуальный объемный звук .

При включенном 7.1-канальном объемном звуке Windows будет использовать 7.1-канальное объемное звучание в видеоиграх или фильмах, а также смешать их со стереозвуком с учетом положения предметов перед отправкой в ​​наушники, то есть объемный звук 5.1 также будет работать.

Чтобы правильно использовать эту функцию, вам необходимо настроить игру или видеоплеер для вывода объемного звука 7.1, даже если вы используете наушники. Ваши наушники будут функционировать как виртуальное устройство объемного звучания 7.1.

Но, в отличие от настоящего объемного звука , вы по-прежнему используете стандартную пару стереонаушников с двумя динамиками – по одному для каждого уха. Тем не менее, виртуальный объемный звук обеспечивает более качественное позиционирование звуковых сигналов, которые особенно полезны при игре на ПК или Xbox.

Функция виртуального объемного звука работает со всеми приложениями, обеспечивающими звук 7.1. Многие игры и фильмы, которые не обеспечивают пространственный звук, имеют поддержку объемного звука 7.1, поэтому это совместимо со многими другими приложениями.

Хотите получить качественный объемный звук в своих наушниках или на домашнем кинотеатре совершенно бесплатно? Читайте эту инструкцию.

С каждым новым выпуском (обновлением) операционной системы Windows 10, разработчики не перестают удивлять пользователей различными полезными мини-функциями. Стоит лишь перейти в какие-либо параметры системы, устройств, персонализации, конфиденциальности и т.д., непременно можно найти, на первый взгляд сразу не слишком заметные, но очень полезные настройки.

И кто бы не говорил, Майкрософт разрабатывает свою операционку, в первую очередь, для нас с вами. Все эти заявления о том, что они собирают конфиденциальные данные, следят за нами – ерунда!

Грамотный юзер настроит работу системы так, что передача секретной информации другой стороне будет сведена к минимуму. Не хотите сбора данных о ваших предпочтениях, отключите такую возможность. Надоела реклама – заблокируйте её отображение. Боитесь вирусов и других вредоносных приложений – пользуйтесь официальным, а не взломанным софтом!

И наконец, если не нравится сама Windows, найдите замену в виде или MacOS. Но сейчас поговорим не об этом!

Последнее обновление системы поставляется с новой функцией “Пространственный звук”. Если её активировать, то вы непременно получите ощущение, что звук играет вокруг вас, а не через наушники. Если сказать немного по-другому – он будет 3D или объемный.

Как вы можете убедиться, здесь Майкрософт никак не навязывает эту функцию пользователю, так как по умолчанию она отключена. А дальше мы узнаем, как её включить.

ОБЪЕМНЫЙ ЗВУК

Windows 10 умеет транслировать пространственный звук при помощи комбинации специального драйвера, приложения и наушников. Эта технология предназначена для улучшения качества звучания, в первую очередь, ваших наушников.

Для включения необходимо:

  • кликнуть правой кнопкой мышки по значку в системном трее и нажать на “Устройства воспроизведения”;
  • выбрать “Динамики” и нажать на кнопку “Свойства”;
  • перейти на вкладку “Пространственный звук” и выбрать его формат из раскрывающегося списка (Windows Sonic или Dolby Atmos for headphones).

DOLBY ATMOS

Это технология объемного звука для создания в реальном времени динамически отображаемой звуковой среды. Для её работы требуется специальное приложение из магазина Store. Если вы выберете этот вариант и нажмете кнопку “Применить”, он автоматически установит приложение Dolby Access.

Существенным плюсом приложения является поддержка улучшения звучания и для домашнего кинотеатра, в случае аппаратной поддержки им технологии Dolby.

Настройка не заставит пользователя вникать в дебри сложных параметров. Просто выберите соответствующий профиль на стартовом экране и приложение автоматически настроит оборудование.

WINDOWS SONIC

Включает интегрированный пространственный звук в Xbox и Windows, с поддержкой сигналов как для объемного звучания, так и для их высоты. Аудио сможет быть передано без необходимости изменения кода.

Теперь итог! В моем случае, даже самые простые и дешевые наушники при выборе формата Dolby Atmos изменили свое звучание, на порядок качественнее первоначального. Что получилось у вас? Жду ответа в комментариях.

Настоятельно прошу вас заглянуть в . Наша группа в Facebook ждет вас.

И его перспективах.

В этом материале вы узнаете об особенностях воспроизведения звука и музыки в VR, с какими проблемами сталкиваются аудиоспециалисты и как их можно решить.

«Реально то, что осознаешь»

Есть два способа передачи информации с помощью VR-технологий. В первом случае разработчики стремятся воссоздать картинку, максимально приближенную к реальности. Во втором – сгенерировать совершенно другой мир и атмосферу, создать иллюзию, в которой все происходящее логически связано.

Со вторым способом все просто: если обстановка, персонажи и их действия ненастоящие, значит, и законы этого мира отличаются от реальности. Гораздо сложнее воссоздать то, что само по себе реально. Трудность заключается в том, что в некоторых играх или видеосюжетах возникают странные моменты, которые «выдергивают» человеческое сознание из этой иллюзии.

Разработчикам игр и мультипликаторам знакома гипотеза, которая носит название эффекта «зловещей долины» (uncanny valley). Суть гипотезы в том, что персонаж, который выглядит или действует почти как человек, но все же немного от него отличается, вызывает у нас страх или неприязнь. Нечто похожее происходит и со звуком в VR.

В отличие от зрительного восприятия, определить, какой объект находится перед нами, на слух, гораздо сложнее. Узнать его приблизительные размеры и относительную дистанцию до него можно, только если объект издает звуки. Благодаря тому, что у нас есть богатый «слуховой» опыт восприятия мира, в виртуальной реальности мозг сравнивает новую информацию с тем, что происходит с нами в действительности.

Человеческий голос в данном случае – наиболее «знакомый» для нас фактор: поэтому его наличие в звуковом оформлении игры заметно облегчает наше «слуховое погружение» в виртуальную реальность. Но голос, как и человекоподобный персонаж, подвержен эффекту «зловещей долины». Например, слишком высокая компрессия звука вызовет «недоверие» у нашего сознания.

Видео ниже помогает понять, на что способен наш мозг. Всю информацию о перемещении объектов мозг получает только из звукового сигнала. Эту и следующие видеозаписи рекомендуется прослушивать в наушниках и с закрытыми глазами.

Звук в этом видео был создан с помощью метода бинауральной записи: она осуществляется через два микрофона, а итоговый фрагмент необходимо прослушивать в наушниках.

Помимо специального расположения микрофонов, в записи участвует либо манекен, имитирующий реальную голову, либо так называемый диск Джеклина (на фото ниже). Не путайте понятия «бинауральный» и «стерео». Обычная стереозапись не учитывает расстояние между ушами и отражение звука от головы и ушных раковин – факторы, влияющие на распространение звука.

В современных шлемах виртуальной реальности эти условия, к сожалению, не учитываются. Более того, такие компании, как Project Morpheus и HTC Vive, поставляют VR-шлемы без наушников, предлагая покупателям воспользоваться своей техникой. В комплекте Oculus Rift есть фирменные наушники, но и здесь предполагается замена на модель «более высокого качества».

У геймеров большой популярностью пользуются наушники с технологией Surround Sound 7.1. На сайте сообщества геймеров Kotaku проводилось голосование за лучшие игровые наушники. Самыми популярными моделями оказались беспроводные наушники Astro A50 и Logitech G930 , поддерживающие эту технологию. Другими словами, само сообщество определило, что «высокое качество» подразумевает наличие эффекта объемного звучания.

Итак, бинауральное звучание отличается от стерео. Стерео (2.0), в свою очередь, отличается от объемного звука (7.1): Если для бинаурального и стереозвучания требуются специальные способы звукозаписи, то для того, чтобы добиться эффекта пространственного звучания, звук нужно проигрывать через большое количество источников звука. Именно за счет числа динамиков создается эффект погружения.

Однако для VR в первую очередь важно не погружение, а «реалистичность» звучания. Если бинауральную запись подвергнуть обработке через гарнитуры формата 7.1, то конечная запись вряд ли оправдает ожидания слушателя. Это значит, что стандартными методами эту проблему решить не удастся.

Главное – реалистичность


Чтобы добиться реалистичности звучания, нужно учитывать положение тела в пространстве, а также следить за взаимодействием с передаточной функцией головы (HRTF).

В VR у пользователя есть возможность перемещаться и совершать движения головой в любом направлении. Соответственно, если голова, а точнее уши, изменят свое положение, то входящий звуковой сигнал тоже должен измениться. Бинауральная запись может усилить эффект погружения в виртуальную реальность, подчеркнув глубину происходящих событий.

Помимо звуков, которые мы привыкли слышать – так называемых диегетических звуков, существуют также недиегетические звуки: мы не слышим их в повседневной жизни, но они могут быть частью компьютерной игры или фильма. Пример – фоновая музыка или речь повествователя.

В компьютерной игре нас не интересует, откуда исходит голос и музыка. Другое дело –виртуальная реальность. Чтобы вписать недиегетические звуки в виртуальный мир, необходимо использовать связующие объекты. К примеру, логично будет смотреться, если повествователь говорит по радио или в телефонную трубку.

Что касается музыки, то здесь возникают другие вопросы. Конечно, ее можно привязать к радиоприемнику, чтобы было понятно, откуда исходит звук. Но этого не достаточно: музыка, исходящая из него, будет звучать неравномерно.

Одно из возможных решений – применение динамической компрессии вместе с усилением нижних частот, вызывающие «эффект близости». На видео ниже Александр Джей Тернер (Alexander J Turner) подробно разбирает это явление. Оно тесно связано с устройством микрофона: чем ближе к нему говорящий, тем ярче на выходе нижние частоты и тем звук будет более насыщенным.

В играх зачастую используются композиции, записанные в студиях или других акустических пространствах. Эти пространства передают «живость» звучания благодаря тому, что звучание инструментов смешивается со звуковыми отражениями в помещении. Так, на концерте в консерватории не возникает ощущения, что музыка давит или вторгается в личное пространство. Наоборот, мы чувствуем, что она находится на расстоянии от нас.

Однако в VR не используются «слишком живые» записи: слушателю будет непонятно, откуда исходит звук. Альтернативным решением этой проблемы будет запись музыки в нейтральной среде с последующей обработкой, чтобы не нарушать органичность звучания. Также, возможно, стоит отказаться от стереозвучания и свести все к более центрированному звуку. Его можно немного сжать, а затем применить к нему настройки эквалайзера. Тогда музыка будет звучать так, будто она играет не «где-то там», а «у нас в голове».

Эффекта реалистичности можно также добиться за счет ненавязчивого акцента на окружающей ситуации. Например, в следующем видео чувствуется как визуальная, так и звуковая напряженность. Стоит отметить, что эффект от диегетических звуков в этой записи сильнее, чем от недиегетических, и больше акцента делается на обстановке, чем на звуке.

Еще один пример того же подхода. Всего несколько звуков создают нагнетающую и напряженную атмосферу.

Таким образом, звук, выверенный слишком чисто и аккуратно, может показаться искусственным. В то же время, даже если он «грязный», но создает реалистичную картину – с помощью дополнительных звуковых эффектов или динамичной окружающей среды – впечатление от прослушивания будет в разы сильнее.

Иными словами, не надо стремиться сделать звук идеальным. Нужно сделать его как можно реалистичнее, чтобы слушатель мог ощутить те эмоции, которые задумывал создатель того или иного произведения.

Мы постоянно разбираемся в новинках и просто изучаем интересные материалы о звуке. Совсем недавно мы начали готовить тематические