Интернет. Настройки. Тарифы. Телефон. Услуги

Алгебраическое дополнение матрицы 4х4. Алгебраическое дополнение

Продолжаем разговор о действиях с матрицами. А именно – в ходе изучения данной лекции вы научитесь находить обратную матрицу. Научитесь. Даже если с математикой туго.

Что такое обратная матрица? Здесь можно провести аналогию с обратными числами: рассмотрим, например, оптимистичное число 5 и обратное ему число . Произведение данных чисел равно единице: . С матрицами всё похоже! Произведение матрицы на обратную ей матрицу равно – единичной матрице , которая является матричным аналогом числовой единицы. Однако обо всём по порядку – сначала решим важный практический вопрос, а именно, научимся эту самую обратную матрицу находить.

Что необходимо знать и уметь для нахождения обратной матрицы? Вы должны уметь решать определители . Вы должны понимать, что такое матрица и уметь выполнять некоторые действия с ними.

Существует два основных метода нахождения обратной матрицы:
с помощью алгебраических дополнений и с помощью элементарных преобразований .

Сегодня мы изучим первый, более простой способ.

Начнем с самого ужасного и непонятного. Рассмотрим квадратную матрицу . Обратную матрицу можно найти по следующей формуле :

Где – определитель матрицы , – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Понятие обратной матрицы существует только для квадратных матриц , матриц «два на два», «три на три» и т.д.

Обозначения : Как вы уже, наверное, заметили, обратная матрица обозначается надстрочным индексом

Начнем с простейшего случая – матрицы «два на два». Чаще всего, конечно, требуется «три на три», но, тем не менее, настоятельно рекомендую изучить более простое задание, для того чтобы усвоить общий принцип решения.

Пример:

Найти обратную матрицу для матрицы

Решаем. Последовательность действий удобно разложить по пунктам.

1) Сначала находим определитель матрицы .

Если с пониманием сего действа плоховато, ознакомьтесь с материалом Как вычислить определитель?

Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ .

В рассматриваемом примере, как выяснилось, , а значит, всё в порядке.

2) Находим матрицу миноров .

Для решения нашей задачи не обязательно знать, что такое минор, однако, желательно ознакомиться со статьей Как вычислить определитель .

Матрица миноров имеет такие же размеры, как и матрица , то есть в данном случае .
Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.

Возвращаемся к нашей матрице
Сначала рассмотрим левый верхний элемент:

Как найти его минор ?
А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшееся число и является минором данного элемента , которое записываем в нашу матрицу миноров:

Рассматриваем следующий элемент матрицы :

Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент:

То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу:

Аналогично рассматриваем элементы второй строки и находим их миноры:


Готово.

Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел:

Именно у этих чисел, которые я обвел в кружок!

– матрица алгебраических дополнений соответствующих элементов матрицы .

И всего-то лишь…

4) Находим транспонированную матрицу алгебраических дополнений .

– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

5) Ответ .

Вспоминаем нашу формулу
Всё найдено!

Таким образом, обратная матрица:

Ответ лучше оставить в таком виде. НЕ НУЖНО делить каждый элемент матрицы на 2, так как получатся дробные числа. Более подробно данный нюанс рассмотрен в той же статье Действия с матрицами .

Как проверить решение?

Необходимо выполнить матричное умножение либо

Проверка:

Получена уже упомянутая единичная матрица – это матрица с единицами на главной диагонали и нулями в остальных местах.

Таким образом, обратная матрица найдена правильно.

Если провести действие , то в результате тоже получится единичная матрица. Это один из немногих случаев, когда умножение матриц перестановочно, более подробную информацию можно найти в статье Свойства операций над матрицами. Матричные выражения . Также заметьте, что в ходе проверки константа (дробь) выносится вперёд и обрабатывается в самом конце – после матричного умножения. Это стандартный приём.

Переходим к более распространенному на практике случаю – матрице «три на три»:

Пример:

Найти обратную матрицу для матрицы

Алгоритм точно такой же, как и для случая «два на два».

Обратную матрицу найдем по формуле: , где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

1) Находим определитель матрицы .


Здесь определитель раскрыт по первой строке .

Также не забываем, что , а значит, всё нормально – обратная матрица существует .

2) Находим матрицу миноров .

Матрица миноров имеет размерность «три на три» , и нам нужно найти девять чисел.

Я подробно рассмотрю парочку миноров:

Рассмотрим следующий элемент матрицы:

МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшиеся четыре числа записываем в определитель «два на два»

Этот определитель «два на два» и является минором данного элемента . Его нужно вычислить:


Всё, минор найден, записываем его в нашу матрицу миноров:

Как вы, наверное, догадались, необходимо вычислить девять определителей «два на два». Процесс, конечно, муторный, но случай не самый тяжелый, бывает хуже.

Ну и для закрепления – нахождение еще одного минора в картинках:

Остальные миноры попробуйте вычислить самостоятельно.

Окончательный результат:
– матрица миноров соответствующих элементов матрицы .

То, что все миноры получились отрицательными – чистая случайность.

3) Находим матрицу алгебраических дополнений .

В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов:

В данном случае:

Нахождение обратной матрицы для матрицы «четыре на четыре» не рассматриваем, так как такое задание может дать только преподаватель-садист (чтобы студент вычислил один определитель «четыре на четыре» и 16 определителей «три на три»). В моей практике встретился только один такой случай, и заказчик контрольной работы заплатил за мои мучения довольно дорого =).

В ряде учебников, методичек можно встретить несколько другой подход к нахождению обратной матрицы, однако я рекомендую пользоваться именно вышеизложенным алгоритмом решения. Почему? Потому что вероятность запутаться в вычислениях и знаках – гораздо меньше.

Минором любого элемента определителя называется, определитель второго

порядка, полученный вычеркиванием из данного определителя строки и столбца, содержащих этот элемент. Так минор для элемента

для элемента :

Алгебраическим дополнением любого элемента определителя называют минор этого элемента взятый с множителем , где i – номер строки элемента, j – номер столбца. Таким образом, алгебраическое дополнение элемента :

Пример. Найти алгебраические дополнения для элементов определителя.

Теорема . Определитель равен сумме произведений элементов любого его столбца или строки на их алгебраические дополнения.

Другими словами, имеют место следующие равенства для определителя .

Доказательство этих равенств состоит из замены алгебраических дополнений их выражениями через элементы определителя, при этом получим выражение (3). Предлагается это выполнить самостоятельно. Замена определителя по одной из шести формул называется разложением определителя по элементам соответствующего столбца или строки. Эти разложения применяют для вычисления определителей.

Пример. Вычислить определитель, разложив его по элементам второго столбца.

Используя теорему о разложении определителя третьего порядка по элементам строки или столбца, можно доказать справедливость свойств 1-8 для определителей третьего порядка. Предполагается проверить справедливость этого утверждения. Свойства определителей и теорема о разложении определителя по элементам столбца или строки позволяют упростить вычисления определителей.

Пример . Вычислить определитель.

Вычислим общий множитель «2» элементов второй строки, а затем такой же общий множитель элементов третьего столбца.

Прибавим элементы первой строки к соответствующим элементам второй строки, затем третьей строки.

Разложим определитель по элементам первого столбца.

МиноромM ij элемента a ij определителя n -го порядка называется определитель порядка (n-1 ), полученный из данного определителя вычеркиванием строки и столбца, в которых находится этот элемент (i -ой строки и j -го столбца).

Алгебраическое дополнение элемента a ij задается выражением:

Определители порядка n >3 вычисляются с помощью теоремыо разложении определителя по элементам строки или столбца:

Теорема. Определитель равен сумме произведений элементов любой строки или любого столбца на соответствующие этим элементам алгебраические дополнения, т.е.

Пример.

Вычислить определитель, разложив его по элементам строки или столбца:

Решение

1. Если в какой-нибудь одной строке или одном столбце присутствует только один элемент, отличный от нуля, то преобразовывать определитель нет необходимости. В противном случае, прежде чем применять теорему о разложении определителя, преобразуем его, используя следующее свойство: если к элементам строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на произвольный множитель, то значение определителя не изменится.

Из элементов строки 3 вычитаем соответствующие элементы строки 2 .

Из элементов столбца 4 вычитаем соответствующие элементы столбца 3 , умноженные на 2.

Разлагаем определитель по элементам третьей строки

2. Полученный определитель 3-го порядка можно вычислить по правилу треугольников или по правилу Саррюса (см выше). Однако элементы определителя являются числами довольно большими, поэтому разложим определитель, предварительно преобразовав его:

Из элементов второй строки вычитаем соответствующие элементы первой строки, умноженные на 3.

Из элементов первой строки вычитаем соответствующие элементы третьей строки.

К элементам строки 1 прибавляем соответствующие элементы строки 2

Определитель с нулевой строкой равен 0.

Итак, определители порядка n >3 вычисляются:

· преобразованием определителя к треугольному виду с помощью свойств определителей;

· разложением определителя по элементам сроки или столбца, тем самым понижая его порядок.

Ранг матрицы.

Ранг матрицы представляет собой важную числовую характеристику. Наиболее характерной задачей, требующей нахождения ранга матрицы, является проверка совместности системы линейных алгебраических уравнений.

Возьмем матрицу А порядка p xn . Пусть k – некоторое натуральное число, не превосходящее наименьшего из чисел p и n , то есть,

Минором k-ого порядка матрицы А называется определитель квадратной матрицы порядка k xk , составленной из элементов матрицы А , которые находятся в заранее выбранных k строках и k столбцах, причем расположение элементов матрицы А сохраняется.

Рассмотрим матрицу:

Запишем несколько миноров первого порядка этой матрицы. К примеру, если мы выберем третью строку и второй столбец матрицы А , то нашему выбору соответствует минор первого порядка det(-4)=-4. Иными словами, для получения этого минора мы вычеркнули первую и вторую строки, а также первый, третий и четвертый столбцы из матрицы А , а из оставшегося элемента составили определитель.

Таким образом, минорами первого порядка матрицы являются сами элементы матрицы.

Покажем несколько миноров второго порядка. Выбираем две строки и два столбца. К примеру, возьмем первую и вторую строки, и третий и четвертый столбец. При таком выборе имеем минор второго порядка
.

Другим минором второго порядка матрицы А является минор

Аналогично могут быть найдены миноры третьего порядка матрицы А . Так как в матрице А всего три строки, то выбираем их все. Если к этим строкам выбрать три первых столбца, то получим минор третьего порядка:

Другим минором третьего порядка является:

Для данной матрицы А миноров порядка выше третьего не существует, так как

Сколько же существует миноров k -ого порядка матрицы А порядка p xn ? Немало!

Число миноров порядка k может быть вычислено по формуле:

Рангом матрицы называется наивысший порядок минора матрицы, отличного от нуля.

Ранг матрицы А обозначают как rang(A). Из определений ранга матрицы и минора матрицы можно заключить, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы не меньше единицы.

Итак, первым методом нахождения ранга матрицы является метод перебора миноров . Этот способ основан на определении ранга матрицы.

Пусть нам требуется найти ранг матрицы А порядка p xn .

Если есть хотя бы один элемент матрицы, отличный от нуля, то ранг матрицы как минимум равен единице (так как есть минор первого порядка, не равный нулю).

Далее перебираем миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы равен единице. Если существует хотя бы один ненулевой минор второго порядка, то переходим к перебору миноров третьего порядка, а ранг матрицы как минимум равен двум.

Аналогично, если все миноры третьего порядка равны нулю, то ранг матрицы равен двум. Если существует хотя бы один минор третьего порядка, отличный от нуля, то ранг матрицы как минимум равен трем, а мы преступаем к перебору миноров четвертого порядка.

Отметим, что ранг матрицы не может превышать наименьшего из чисел p и n .

Пример.

Найдите ранг матрицы
.

Решение.

1. Так как матрица ненулевая, то ее ранг не меньше единицы.

2. Один из миноров второго порядка
отличен от нуля, следовательно, ранг матрицы А не меньше двух.

3. Миноров третьего порядка

Все миноры третьего порядка равны нулю. Поэтому, ранг матрицы равен двум.

rang(A) = 2 .

Существуют другие методы нахождения ранга матрицы, которые позволяют получить результат при меньшей вычислительной работе.

Одним из таких методов является метод окаймляющих миноров . При использовании этого метода вычисления несколько сокращаются, и все же они довольно громоздки.

Существуют еще один способ нахождения ранга матрицы - с помощью элементарных преобразований (метод Гаусса).

Следующие преобразования матрицы называют элементарными :

· перестановка местами строк (или столбцов) матрицы;

· умножение всех элементов какой-либо строки (столбца) матрицы на произвольное число k , отличное от нуля;

· прибавление к элементам какой-либо строки (столбца) соответствующих элементов другой строки (столбца) матрицы, умноженных на произвольное число k .

Матрица В называется эквивалентной матрице А , если В получена из А с помощью конечного числа элементарных преобразований. Эквивалентность матриц обозначается символом « ~ » , то есть, записывается A ~ B.

Нахождение ранга матрицы с помощью элементарных преобразований матрицы основано на утверждении: если матрица В получена из матрицы А помощью конечного числа элементарных преобразований, то rang(A) = rang(B) , т.е. ранги эквивалентных матриц равны.

Суть метода элементарных преобразований заключается в приведении матрицы, ранг которой нам требуется найти, к трапециевидной (в частном случае к верхней треугольной) с помощью элементарных преобразований.

Ранг матриц такого вида очень легко найти. Он равен количеству строк, содержащих хотя бы один ненулевой элемент. А так как ранг матрицы при проведении элементарных преобразований не изменяется, то полученное значение будет рангом исходной матрицы.

Пример.

Методом элементарных преобразований найдите ранг матрицы

.

Решение.

1. Поменяем местами первую и вторую строки матрицы А , так как элемент a 11 =0 , а элемент a 21 отличен от нуля:

~

В полученной матрице элемент равен единице. В противном случае нужно было умножить элементы первой строки на . Сделаем все элементы первого столбца, кроме первого, нулевыми. Во второй строке ноль уже есть, к третьей строке прибавим первую, умноженную на 2:


Элемент в полученной матрице отличен от нуля. Умножим элементы второй строки на

Второй столбец полученной матрицы имеет нужный вид, так как элемент уже равен нулю.

Так как , а , то поменяем местами третий и четвертый столбцы и умножим третью строку полученной матрицы на :

Исходная матрица приведена к трапециевидной, ее ранг равен количеству строк, содержащих хотя бы один ненулевой элемент. Таких строк три, следовательно ранг исходной матрицы равен трем.rang(A)=3.


Обратная матрица.

Пусть имеем матрицу А .

Матрицей, обратной матрице А , называется матрица A -1 такая, что A -1 A = A A -1 = E .

Обратная матрица может существовать только для квадратной матрицы. Причем сама является той же размерности, что и исходная матрица.

Для того, чтобы квадратная матрица имела обратную, она должна быть невырожденной (т.е. Δ ≠0 ). Это условие является и достаточным для существования A -1 к матрице А . Итак, всякая невырожденная матрица имеет обратную, и, притом, единственную.

Алгоритм нахождения обратной матрицы на примере матрицы А :

1. Находим определитель матрицы. Если Δ ≠0 , то матрица A -1 существует.

2. Составим матрицу В алгебраических дополнений элементов исходной матрицы А . Т.е. в матрице В элементом i - ой строки и j - го столбца будет алгебраическое дополнение A ij элемента a ij исходной матрицы.

3. Транспонируем матрицу В и получим B t .

4. Найдем обратную матрицу, умножив полученную матрицу B t на число .

Пример.

Для данной матрицы найти обратную и выполнить проверку:

Решение

Воспользуемся ранее описанным алгоритмом нахождения обратной матрицы.

1. Для выяснения существования обратной матрицы, необходимо вычислить определитель данной матрицы. Воспользуемся правилом треугольников:

Матрица является невырожденной, следовательно, она обратима.

Найдем алгебраические дополнения всех элементов матрицы:



Из найденных алгебраических дополнений составляется матрица:

и транспонируется

Разделив каждый элемент полученной матрицы на определитель, получим матрицу, обратную к исходной:

Проверка осуществляется умножением полученной матрицы на исходную. Если обратная матрица найдена правильно, в результате умножения получится единичная матрица.

Для нахождения обратной матрицы для данной, можно воспользоваться методом Гаусса (конечно, предварительно необходимо убедиться, что матрица обратима), рассмотрение которого оставляю для самостоятельной работы.

Миноры матрицы

Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента а ij , определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент а ij . Обозначается М ij .

Рассмотрим на примере определителя матрицы 3 - его порядка:

Тогда согласно определению минора , минором М 12 , соответствующим элементу а 12 , будет определитель :

При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

Знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента а ij называется его минор , взятый со знаком "+", если сумма (i + j) четное число, и со знаком "-", если эта сумма нечетное число. Обозначается А ij . А ij = (-1) i+j × М ij .

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример:

4. Обратная матрица и её вычисление.

Пусть А - квадратная матрица n - ого порядка.

Квадратная матрица А называется невырожденной, если определитель матрицы (Δ = det A) не равен нулю (Δ = det A ≠ 0). В противном случае (Δ = 0) матрица А называется вырожденной.

Матрицей , союзной к матрице А, называется матрица

Где А ij - алгебраическое дополнение элемента а ij данной матрицы (оно определяется так же, как и алгебраическое дополнение элемента определителя матрицы ).

Матрица А -1 называется обратной матрице А, если выполняется условие: А × А -1 = А -1 × А = Е, где Е - единичная матрица того же порядка, что и матрица А. Матрица А -1 имеет те же размеры, что и матрица А.

Обратная матрица

Если существуют квадратные матрицы Х и А, удовлетворяющие условию: X × A = A × X = E , где Е - единичная матрица того же самого порядка, то матрица Х называется обратной матрицей к матрице А и обозначается А -1 . Всякая невырожденная матрица имеет обратную матрицу и притом только одну, т. е. для того чтобы квадратная матрица A имела обратную матрицу , необходимо и достаточно, чтобы её определитель был отличен от нуля.

Для получения обратной матрицы используют формулу:

Где М ji дополнительный минор элемента а ji матрицы А.

5. Ранг матрицы. Вычисление ранга с помощью элементарных преобразований.

Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами матрицы. Например, для матрицы можно составить миноры второго порядкаи миноры первого порядка 1, 0, -1, 2, 4, 3.

Определение. Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы. Обозначают ранг матрицы r (A).

В приведенном примере ранг матрицы равен двум, так как, например, минор

Ранг матрицы удобно вычислять методом элементарных преобразований. К элементарным преобразованиям относят следующие:

1) перестановки строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Эти преобразования не меняют ранга матрицы, так как известно, что 1) при перестановке строк определитель меняет знак и, если он не был равен нулю, то уже и не станет; 2) при умножении строки определителя на число, не равное нулю, определитель умножается на это число; 3) третье элементарное преобразование вообще не изменяет определитель. Таким образом, производя над матрицей элементарные преобразования, можно получить матрицу, для которой легко вычислить ранг ее и, следовательно, исходной матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор -го порядка, не равный нулю:

.

Пример. Определить ранг матрицы с помощью элементарных преобразований.

Ранг матрицы равен количеству ненулевых строк, т.е. .