Интернет. Настройки. Тарифы. Телефон. Услуги

Современные технические средства и методы обработки информации. Комплекс технических средств обработки информации

Системный блок состоит из корпуса с блоком питания и материнской (системной) платы. Блок питания преобразует переменный ток в постоянный ток низкого напряжения. От мощности блока питания зависит, какое количество дополнительных устройств, которые не имеют собственного блока питания, можно подключать к системному блоку.

Материнская плата - основная часть компьютера, с помощью которой сочетаются другие элементы. Это большая печатная плата, на которой располагаются системная и локальная шины, микропроцессор, оперативная память, дополнительные микросхемы и слоты для подключения дополнительных устройств. Материнские платы унифицированы по типоразмерам (в настоящее время наиболее распространены AT, ATX, LPX, NLX).

Системная шина предназначена для передачи информации между центральным процессором и другими компонентами компьютера. В современных компьютерах применяются шины EISA, PCI, PCMCIA, AGP. Шины делятся на синхронные, где данные передаются соответственно к тактовой частоты (РСИ), и асинхронные, где данные передаются в произвольные моменты времени (EISA).

Центральный процессор (Central Processing Unit - CPU) - это большая интегральная схема, реализованная на одном полупроводниковом кристалле, что предназначена для программно управляемой обработки информации. В зависимости от типа инструкций, которые выполняются, различают микропроцессоры CISC (Complex Instruction Set Computer) и RISC (Reduce Instruction Set Computer). Первые микропроцессоры были CISC-процессорами. В RISC-процессорах используются инструкции одинаковой длины, которые проще и быстрее выполняются.

Разрядность микропроцессора определяет, сколько битов информации обрабатывается в нем за один такт. Первый микропроцессор Intel 4004, появившийся в 1971 p., был чотирирозрядним и имел тактовую частоту 750 КГц. С развитием процессоров их тактовая частота, разрядность регистров и внешней шины данных увеличиваются, улучшается декодирования команд. Современные компьютеры Pentium III имеют тактовую частоту 450 МГц и выше.

Оперативная память бывает динамичной или статичной. Оперативная память динамического типа - это память с произвольным выбором (Dynamic Random Access Memory, DRAM). Каждый бит такой памяти представляется как наличие или отсутствие заряда на конденсаторе, образованном в структуре полупроводникового кристалла. Статическая память (Static RAM - SRAM) как элементарную ячейку использует статический триггер, состоящий из нескольких транзисторов. Эта память имеет высокое быстродействие, но она дороже.

По способу доступа к данным память разделяют на синхронную и асинхронную. Микросхемы динамической памяти выполняются в различных корпусах: SIMM (Single In line Memory Module), DIMM (Dual In line Memory Module). SDRAM синхронизирована с системным таймером, который управляет центральным процессором. SDRAM II (DDR - Double Data Rate) использует более точную внутреннюю синхронизацию, что вдвое увеличивает скорость доступа.

В видеопамяти используется динамическая оперативная память, которая имеет ряд особенностей: доступ осуществляется достаточно крупными блоками, перезаписи данных происходит без прерывания процедуры считывания.

BIOS (Basic Input/Output System) - специальная микросхема, которая содержит набор программ ввода-вывода, с помощью которых операционная система и прикладные программы могут взаимодействовать с устройствами компьютера на физическом уровне; программу тестирования компьютера и его устройств, что запускается при включении компьютера; программу setup для изменения параметров, определяющих конфигурацию компьютера.

Устройства хранения информации

Накопители информации предназначены для длительного хранения больших объемов информации. Этот вид памяти, в отличие от оперативной, энерго-независимый, т.е. информация не теряется после выключения питания компьютера. В основе работы устройств хранения информации лежат разные принципы (магнитные, оптические и т.п.). Стоимость хранения единицы информации на них значительно ниже по сравнению с оперативной памятью, а объем носителей, которые используются в этих устройствах намного больше, однако время доступа к информации в них еще больше. Различают накопители со сменными и неизменными носителями. Надежность сохранения информации на несъемных носителях значительно больше, а время доступа меньше.

Для интеграции в компьютер накопителей информации разработаны специальные интерфейсы, из которых на сегодняшний день наиболее популярные IDE (Integrated Drive Electronics) и SCSI (Small Computer System Interface).

Интерфейс SCSI был разработан в 1970 p. К шине можно подключать до восьми устройств, включая основной контроллер SCSI. Контроллер SCSI имеет собственный BIOS, который управляет вось-мирозрядною шиной SCSI, освобождая центральный процессор.

Интерфейс IDE был предложен в 1988 г. Функции контроллера реализованы в электронной части устройства. Обмен данными может осуществляться как через центральный процессор (РИО - Programmed Input/Output), так и напрямую (DMA - Direct Memory Access).

Стримеры - накопители на магнитных лентах. Они обычно используются для создания архивных копий большого объема и имеют встроенные средства сжатия данных.

Накопители на жестких дисках - это устройства с неизменным носієм. их часто называют винчестерами. Они содержат механический привод, головки считывания записи на несколько носителей и контроллер, обеспечивающий работу устройства и передачу данных. Для записи информации используются магнитные свойства поверхности дисков-носителей.

Накопители на жестких дисках отличаются друг от друга прежде всего своей емкостью и скоростью работы. Скорость работы диска характеризуется двумя показателями: временем доступа к данным на диске и скоростью чтения и записи данных на диск.

При чтении или записи коротких блоков данных, расположенных в разных участках диска, скорость работы определяется временем доступа к данным, а при считывании или записи больших блоков данных гораздо важнее пропускная способность тракта обмена с диском.

Накопители на сменных дисках: приводы для дискет размером "и 5,25" - FDD (Floppy Disk Drive), магнитооптических дисков - MOD (Magneto-Optical Disk), CD-ROM, CD-RW, DVD (Digital Versatile Disk). Они позволяют переносить информацию с одного компьютера на другой и делать архивные копии информации, содержащейся на жестком диске.

Следует заметить, что время доступа и скорость чтения-за-аписи зависят не только от самого устройства, но и от параметров всего тракта обмена с диском: от быстродействия контроллера диска, системной шины и центрального процессора компьютера.

Клавиатура является основным устройством ввода информации в компьютер. Это совокупность механических датчиков, воспринимающих нажатия на клавиши и замыкающих определенную электрическую цепь. Разработано много видов клавиатур, отличающихся в основном по эргономическими качествами. В клавиатуру могут встраиваться дополнительные устройства, например микрофон. Наиболее распространены два вида клавиатур: с механическим и мембранным переключателями. Технология, основанная на мембранных переключателях, считается более прогрессивной, хотя особых преимуществ не имеет.

Мыши и трекболы - это координатные устройства ввода информации в компьютер. Они имеют две или три кнопки управления, но третья кнопка практически не используется. Кроме того, двокнопкова мышь может иметь специальное колесико для быстрого просмотра многостраничной информации. Распространены как механические мыши, так и оптические, которые позволяют достигать большей точности. Есть три способа подключения мыши: через последовательный СОМ-порт, порт PS/2 и порт USB. В трекболі движется не корпус, а только его шарик, что позволяет повысить точность управления курсором и не требует дополнительного пространства для работы. Трекболы обычно используются в портативных компьютерах.

Сканер - это устройство, с помощью которого информация с бумажных носителей вводится в компьютер. Оптическое разрешение сканера определяет размер элементов, которые сканер передает без искажений. Разрешающая способность зависит от количества элементов, используемых на единицу длины в линейке светочувствительных элементов и от шага перемещения устройства сканирования. Она измеряется в dpi - количество точек на дюйм.

Все модели сканеров можно разделить на ручные, планшетные, рулонные и барабанные. Ручные сканеры надо перемещать рукой по материалу, который сканируется. В планшетных сканерах головка сканирования перемещается по изображению с помощью шагового двигателя. Рулонные сканеры протягивают изображения через устройство сканирования. Барабанные сканеры используют фотоэлектронный множитель как светочувствительный элемент.

Кроме того, сканеры разделяют на однопроходные, что используют три линейки для одновременного получения информации о три основные цвета, и трипрохідні, что за один проход получают информацию о какой-то один цвет. Цветовая разрядность сканера определяется количеством битов, используемых для хранения информации о цвете. Современные сканеры используют не менее 24 бит (8 бит на каждый цвет).

Для связи с компьютером сканеры используют последовательный и параллельный порты, а также интерфейсы SCSI и USB.

Электронный планшет - координатный преобразователь, используется в основном для задач САПР.

Джойстик - аналоговый рычажный устройство для ввода координатной информации. Он используется практически только в играх и тренажерах.

Технологический процесс обработки данных в информационных системах осуществляется при помощи:

    технических средств сбора и регистрации данных;

    средств телекоммуникаций;

    систем хранения, поиска и выборки данных;

    средств вычислительной обработки данных;

    технических средств оргтехники.

В современных информационных системах технические средства обработки данных используются комплексно, на основе технико-экономического расчёта целесообразности их применения, с учётом соотношения “цена/качество” и надежности работы технических средств.

Информационные технологии

Информационные технологии можно определить как совокупность методов – приёмов и алгоритмов обработки данных и инструментальных средств – программных и технических средств обработки данных.

Информационные технологии можно условно разделить на категории:

    Базовые информационные технологии – это универсальные технологические операции обработки данных, как правило, не зависящие от содержания обрабатываемой информации, например, запуск программ на выполнение, копирование, удаление, перемещение и поиск файлов и т.п. Они основаны на использовании широко применяемых программных и технических средств обработки данных.

    Специальные информационные технологии – комплекс информационно связанных базовых информационных технологий, предназначенных для выполнения специальных операций с учетом содержания и/или формы представления данных.

Информационные технологии являются необходимым базисом для создания информационных систем.

Информационные системы

Информационная система (ИС) представляет собой коммуникационную систему по сбору, передаче, переработке информации об объекте, снабжающую работников различного ранга информацией для реализации функции управления.

Пользователями ИС являются организационные единицы управления – структурные подразделения, управленческий персонал, исполнители. Содержательную основу ИС составляют функциональные компоненты – модели, методы и алгоритмы формирования управляющей информации. Функциональная структура ИС представляет собой совокупность функциональных компонентов: подсистем, комплексов задач, процедур обработки информации, определяющих последовательность и условия их выполнения.

Внедрение информационных систем производится с целью повышения эффективности производственно-хозяйственной деятельности объекта за счет не только обработки и хранения рутинной информации, автоматизации конторских работ, но и за счет принципиально новых методов управления. Эти методы основаны на моделировании действий специалистов организации при принятии решений (методы искусственного интеллекта, экспертные системы и т.п.), использовании современных средств телекоммуникаций (электронная почта, телеконференции), глобальных и локальных вычислительных сетей и т. д.

Классификация ИС проводится по следующим признакам:

    характер обработки информации;

    масштаб и интеграция компонентов ИС;

    информационно-технологическая архитектура ИС.

По характеру обработки информации и сложности алгоритмов обработки ИС принято делить на два больших класса:

    ИС для оперативной обработки данных. Это традиционные ИС для учета и обработки первичных данных большого объема с применением жестко регламентированных алгоритмов, фиксированной структуры базы данных (БД) и т.п.

    ИС поддержки и принятия решений . Они ориентированы на аналитическую обработку больших объемов информации, интеграцию разнородных источников данных, использование методов и средств аналитической обработки.

В настоящее время сложились основные информационно-технологические архитектуры:

    ИС с централизованной обработкой данных,

    архитектура вида “файл-сервер”,

    архитектура вида “клиент-сервер”.

Централизованная обработка предполагает объединение на одном компьютере ПС пользовательского интерфейса, приложений и БД.

В архитектуре файл-сервер ” многим пользователям сети предоставляются файлы главного компьютера сети, называемого файл-сервером . Это могут быть отдельные файлы пользователей, файлы баз данных и программы приложений. Вся обработка данных производится на компьютерах пользователей. Такой компьютер называется рабочей станцией (РС). На ней устанавливаются ПС пользовательского интерфейса и приложений, которые могут вводиться как с устройств ввода РС, так и передаваться по сети с файл-сервера. Файл-сервер может использоваться также для централизованного хранения файлов отдельных пользователей, пересылаемых ими по сети с РС. Архитектура “файл-сервер ” применяется преимущественно в локальных компьютерных сетях.

В архитектуре клиент-сервер ” программное обеспечение ориентировано не только на коллективное использование ресурсов, но и на их обработку в месте размещения ресурса по запросам пользователей. Программные системы архитектуры “клиент-сервер” состоят из двух частей: программного обеспечения сервера и программного обеспечения пользователя-клиента. Работа этих систем организуется следующим образом: программы-клиенты выполняются на компьютере пользователя и посылают запросы к программе-серверу, которая работает на компьютере общего доступа. Основная обработка данных производится мощным сервером, а на компьютер пользователя посылаются только результаты выполнения запроса. Так, например сервер баз данных используется в мощных СУБД, таких как Microsoft SQL Server, Oracle и др., работающих с распределенными базами данных. Серверы баз данных рассчитаны на работу с большими объемами данных (десятки гигабайт и более) и большое число пользователей и обеспечивают при этом высокую производительность, надежность и защищенность. Архитектура “клиент-сервер”, в определенном смысле, является основной в приложениях глобальных компьютерных сетей.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

«ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

КАФЕДРА «СИСТЕМЫ ИНФОРМАЦИИ»

на тему: «Технические средства обработки информации»

по курсу «Информатика»

Выполнил: студент1-го курса,группа:Эк50А

Горбаченко Алёна Дмитриевна

Проверил: доцент кафедры СИ

Ткаченко В.А.

Харьков 2010

Введение

Для информатики компьютер - это не только инструмент для работы с информацией, но и объект изучения. Вы узнаете, как компьютер устроен, какую работу с его помощью можно выполнять, какие для этого существуют программные средства.

С давних времен люди стремились облегчить свой труд. С этой целью создавались различные машины и механизмы, усиливающие физические возможности человека. Компьютер был изобретен в середине XX века для усиления возможностей умственной работы человека, т. е. работы с информацией.

По своему назначению компьютер - универсальное техническое средство для работы человека с информацией. По принципам устройства компьютер - это модель человека, работающего с информацией.

Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники.

1. История развития компьютера

1.1 Первое поколение ЭВМ (1948 -- 1958 гг.)

Элементной базой машин этого поколения были электронные лампы - диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2--3 тысяч операций в секунду, емкость оперативной памяти--2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам).

компьютер клавиатура монитор мышь

1.2 Второе поколение ЭВМ(1959-1967)

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения.

Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д

1.3 Третье поколение ЭВМ(1968-13-973)

Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились

1.4 Четвертое поколение ЭВМ(1974-1982)

Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение.

1.5 Пятое поколение

90-е годы; ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

Шестое и последующие поколения; оптоэлектронные ЭВМ с массовым параллелизмом и нейтронной структурой - с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейтронных биологических систем.

2. Классификация ЭВМ

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Характерными чертами универсальных ЭВМ является:

высокая производительность;

разнообразие форм обрабатываемых данных: двоичных, десятиричных, символьных, при большом диапазоне их изменения и высокой степени их представления;

обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных;

большая емкость оперативной памяти;

развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адептеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами согласования и сопряжения работы узлов вычислительных систем. К таким компьютерам также относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Бортовые компьютеры управляют средствами ориентации и навигации, осуществляют контроль за состоянием бортовых систем, выполняют некоторые функции автоматического управления и связи, а также большинство функций оптимизации параметров работы объекта (например, оптимизацию расхода топлива объекта в зависимости от конкретных условий движения). Специализированные мини-ЭВМ, ориентированные на работу с графикой, называют графическими станциями. Специализированные компьютеры, объединяющие компьютеры предприятия в одну сеть, называют файловыми серверами. Компьютеры, обеспечивающие передачу информации между различными участниками всемирной компьютерной сети, называют сетевыми серверами.

Во многих случаях с задачами специализированных компьютерных систем могут справляться и обычные универсальные компьютеры, но считается, что использование специализированных систем все-таки эффективнее. Критерием оценки эффективности выступает отношение производительности оборудования к величине его стоимости.

По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие, большие, малые, сверхмалые (микроЭВМ).

Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики:

быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;

разрядность и формы представления чисел, с которыми оперирует ЭВМ;

номенклатура, емкость и быстродействие всех запоминающих устройств;

номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;

типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);

способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);

типы и технико-эксплутационные характеристики операционных систем, используемых в машине;

наличие и функциональные возможности программного обеспечения;

способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);

система и структура машинных команд;

возможность подключения к каналам связи и к вычислительной сети;

эксплуатационная надежность ЭВМ;

коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики.

Рисунок Схема классификации ЭВМ, исходя из их вычислительной мощности и габаритов

Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции. Первая большая ЭВМ ЭНИАК была создана в 1946 году. Эта машина имела массу более 50 т., быстродействие несколько сотен операций в секунду, оперативную память емкостью 20 чисел; занимала огромный зал площадью 100 кв.м.

Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания суперЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время.

Появление в 70-х годах малых ЭВМ обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой - избыточностью ресурсов больших ЭВМ для ряда приложений. Малые ЭВМ используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ.

Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супермини-ЭВМ - вычислительной машины, относящейся по архитектуре, размерам и стоимости к классу малых ЭВМ, но по производительности сравнимой с большой ЭВМ.

Изобретение в 1969 году микропроцессора привело к появлению в 70-х годах еще одного класса ЭВМ - микроЭВМ. Именно наличие микропроцессора служило первоначально определяющим признаком микроЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.

Суперкомпьютеры - это самые мощные по быстродействию и производительности вычислительные машины. К суперЭВМ относятся “Cray” и “IBM SP2” (США). Используются для решения крупномасштабных вычислительных задач и моделирования, для сложных вычислений в аэродинамике, метеорологии, физике высоких энергий, также находят применение и в финансовой сфере.

Большие машины или мейнфреймы (Mainframe). Мейнфреймы используются в финансовой сфере, оборонном комплексе, применяются для комплектования ведомственных, территориальных и региональных вычислительных центров.

Средние ЭВМ широкого назначения используются для управления сложными технологическими производственными процессами.

Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов, в качестве сетевых серверов.

Микро - ЭВМ -- это компьютеры, в которых в качестве центрального процессора используется микропроцессор. К ним относятся встроенные микро - ЭВМ (встроенные в различное оборудование, аппаратуру или приборы) и персональные компьютеры PC.

Современные персональные компьютеры имеют практически те же характеристики, что и мини-ЭВМ восьмидесятых годов. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня, используются как средство обработки информации в информационных системах.

К персональным компьютерам относятся настольные и переносные ПК.

К переносным ЭВМ относятся Notebook (блокнот или записная книжка) и карманные персональные компьютеры (Personal Computers Handheld - Handheld PC, Personal Digital Assistants - PDA и Palmtop).

3 Архитектура ЭВМ

Классические принципы построения архитектуры ЭВМ были предложены в работе Дж. фон Неймана, Г.Голдстейга и А. Беркса в 1946 году и известны как " принципы фон Неймана". Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации удобств и простоту выполнения в ней арифметических и логических операций. ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера

3.1 Принцип хранимой программы

Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием. Нейман первым догадался, что программа может также храниться в виде нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру(см рис.1), которая воспроизводилась в течение первых двух поколений ЭВМ.

Устройство управления (УУ) и арифметико-логическое устройство (АЛУ) в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств.

Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров "многоярусно" и включает оперативное запоминающее устройство (ОЗУ) и внешние запоминающие устройства(ВЗУ)

ОЗУ- это устройство, хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы).ВЗУ-устройства гораздо большей емкости, чем ОЗУ, но существенно более медленны.

3.2 Принцип последовательного выполнения операций

Структурно основная память состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

4. Устройство ПК и их характеристики

Персональными называются компьютеры, на которых может одновременно работать только один пользователь. Персональные компьютеры имеют только одно рабочее место.

Под термином «конфигурация» компьютера понимают список устройств, входящих в его состав.

В соответствие с принципом открытой архитектуры аппаратное обеспечение компьютеров может быть весьма различным. Но любой персональный компьютер имеет обязательный и дополнительный набор устройств.

Обязательный набор устройств:

Монитор - устройство вывода текстовой и графической информации.

Клавиатура - устройство для ввода текстовой информации.

Системный блок - объединение большого количества различных компьютерных устройств.

4.1 Системный блок

Системный блок - самый главный блок компьютера. К нему подключаются все остальные блоки, называемые внешними или периферийными устройствами. В системном блоке находятся основные электронные компоненты компьютера. ПК построен на основе СБИС (сверхбольших интегральных схем), и почти все они находятся внутри системного блока, на специальных платах (плата - пластмассовая пластина, на которой закреплены и соединены между собой электронные компоненты - СБИСы, микросхемы и др.). Самой важной платой компьютера является системная плата. На ней находятся центральный процессор, сопроцессор, оперативное запоминающее устройство - ОЗУ и разъемы для подключения плат-контроллеров внешних устройств.

В системном блоке размещаются:

· блок питания - устройство, преобразующее переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и внутренних устройств. Блок питания содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока.

· системная плата (материнская плата);

· магистраль (системная шина);

· процессор;

· звуковая карта;

· видеокарта (графическая карта);

· накопители на жёстких магнитных дисках;

· накопители на гибких магнитных дисках;

· оптические, магнитооптические и пр. накопители;

· накопитель CD-ROM, DVD-ROM;

4.2 Монитор

Монитор - является одним из главных универсальных средств вывода информации, которое показывает, что делает компьютер в данный момент. Монитор подключается к видеокарте, установленной в компьютере.

Мониторы выпускаются с разными трубками - от 14 до 21 дюйма. Замер трубки производится по диагонали от угла до угла - к горизонтальной ширине это не относится. Поскольку внешние границы трубки частично скрыты корпусом монитора, видимая диагональ экрана всегда меньше ее указанного размера.

Если вы собираетесь готовить к публикации книги или журналы, или создавать масштабные чертежи и диаграммы, то в этом случае вам понадобится монитор размером в 21 дюйм. Но если вы обычный пользователь, то вам будет достаточно 15 или 17-дюймового монитора.

На панели управления монитором могут быть регуляторы, кнопки или комбинации тех и других. У всех мониторов, кроме самых дешевых, инструкций по настройке отображаются на экране. Параметры настройки позволяют изменять яркость, контрастность, а также расположение изображения на экране.

Некоторые мониторы (в большинстве своем уже устаревшего типа) имеют встроенные колонки и микрофон, а иногда и встроенную видеокамеру для проведения видеоконференций.

4.3 Клавиатура

Клавиатура занимает первое место в иерархии устройств ввода. Кроме полного набора букв алфавита, чисел и математических знаков, на клавиатуре есть клавиши управления, такие как табуляция и возврат каретки. Кроме этого, есть клавиши, связанные исключительно с командами - например, передвижение курсора по экрану, переход к началу или концу документа и удаление ошибок. Основная функция клавиатуры - это ввод числовой и текстовой информации. Клавиатура бывает разного цвета и формы, но вне зависимости от внешнего вида генерирует стандартный набор цифровых кодов, распознаваемых компьютером. Клавиатура состоит из микропроцессора, а также 104 клавиш и 3 информирующих о режимах работы световых индикатора в правом верхнем углу. Кабель подает питание от компьютера и направляет его к клавиатуре. Контакты под каждой клавишей соединены проводами с микропроцессором так, что каждую из клавиш можно легко идентифицировать. При нажатии клавиши происходит отклонение в электрическом потоке. Микропроцессор посылает компьютеру код, называемый кодом опроса клавиатуры. Он также определяет, когда были нажаты одновременно две клавиши, как в случае использования Shift для печати заглавных букв. В дешевых клавиатурах контакты под клавишей напоминают сэндвичи на гибкой мембране. Они выходят из строя быстрее, чем дорогие модели, в которых использованы механические переключатели для каждой клавиши. Разница состоит также в качестве работы и производимом шуме.

Стандартные клавиатуры имеют компоновку QWERTY (название происходит от первых шести английских букв в верхнем ряду) и бывают следующих видов: грязеотталкивающие и водоотталкивающие; эргономичные, клавиатуры для детей и инфракрасные, которые не требуют подключения через кабель.

4.4 Порты

К портам подключаются периферийные устройства ввода/вывода. Разъемы портов обычно устанавливаются прямо па системную плату и выносятся на заднюю стенку компьютера. Порты взаимодействуют с южным мостом чипсета, также возможен вариант, когда некоторые порты обслуживаются специализированным чипом SuperlO, который, в свою очередь, взаимодействует с южным мостом. Порты также называют интерфейсами. На задней панели компьютера можно встретить разъемы следующих портов (интерфейсов).

Последовательный порт (СОМ). Присутствует в компьютерах вот уже более двух десятков лет, однако в последнее время применяется не очень часто. Изначально в компьютерах присутствовали два последовательных порта COMI и COM2, однако во многих современных платах есть разъем только для COMI, а в некоторых новых платах последовательный порт отсутствует, как устаревший.

Параллельный порт (LPT). К нему подключаются некоторые модели принтеров, сканеров и другие устройства. Стандартный параллельный порт имеет не очень" высокое быстродействие, поэтому используются его ускоренные режимы работы ЕСР или ЕРР. Этот порт также является устаревшим и может отсутствовать на некоторых новых платах.

Игровой порт. К нему подключаются джойстики, рули и другие игровые манипуляторы. На новых компьютерах этого порта нет, а современные игровые устройства подключаются с помощью USB.

Порт PS/2. В большинстве компьютеров есть два таких специализированных порта: первый для подключения клавиатуры, второй -- для мыши. Если же их нет, тогда клавиатуру и мышь следует подключать к разъему USB.

USB. Наиболее популярный интерфейс для самых разнообразных периферийных устройств. На задней панели обычно присутствует от 2 до 8 разъемов USB, кроме того, несколько разъемов может присутствовать на передней панели компьютера

IEEE 1394 (FireWire). Высокоскоростной последовательный порт для цифровых видеоустройств. Не каждая системная плата поддерживает IEEE 1394, поэтому для работы с цифровым видео обычно приходится приобретать дополнительный контроллер.

Разъемы звукового адаптера. Каждая системная плата оснащается встроенным звуковым адаптером, и на задней панели обычно имеется несколько разъемов для подключения колонок, микрофона и других аудиоустройств. В последнее время все чаще можно встретить высококачественные многоканальные звуковые адаптеры (HD Audio), а также новые виды разъемов: оптический и коаксиальный.

VGA. Служит для подключения монитора. При наличии интегрированного видеоадаптера данный разъем будет присутствовать на задней стенке системной платы.

4.5 Мышь

Компьютерная мышь не похожа на свою тезку, но это имя прочно прикрепилось к ней. Основная задача мыши - это управлять движением курсора по экрану.

Все мыши работают почти одинаково. Шарик внутри мыши трется о ролики. На конце каждого ролика есть диск и сенсор для обнаружения движения. Также вращение шара передается двум пластмассовым валам, положение которых с большой точностью считывается инфракрасными оптопарами (то есть парами "светоизлучатель-фотоприемник"). Один ролик поворачивается при движении мыши слева направо, а другой - при движении назад и вперед. Эти движения фиксируются в инструкции экранного указателя.

Большинство мышей оптико-механические. Но существую полностью механические и оптические варианты. Механические части мыши - покрытый резиной стальной шарик и два (или больше) ролика. Ролики работают с оптическими детекторами, определяющими движения по горизонтали и вертикали. Дополнительные ролики нужны, чтобы стабилизировать работу шарика - сделать его движения более плавными. При движении мыши ролики фиксируют градус, скорость и направление. Эти данные направляются в компьютер. Пользователь нажимает одну из клавиш мыши. сигнал посылается в операционную систему и сообщает программному обеспечению, какая клавиша была нажата. После этого программное обеспечение выполняет задание.

Существуют три способа подключения мыши к компьютеру. Большинство мышей подключаются к порту PS/2, которыми оснащены все современные компьютеры. В более старых компьютерах мыши подключаются к последовательному порту. Некоторые мыши подключаются через USB-порт (таким способом подключаются к компьютеру лазерные мышки). Только новые компьютеры имеют такой порт.

Разрешающая способность мышей обычно составляет около 600 dpi (dot per inch - точек на дюйм). Это означает, что при перемещении мыши на 1 дюйм (2,54 см) указатель мыши на экране перемещается на 600 точек.

Мыши имеют обычно две кнопки управления, которые используются при работе с графическим интерфейсом программ. В настоящее время появились мыши с дополнительным колесиком, которое располагается между кнопками. Оно предназначено для прокрутки вверх или вниз не умещающихся целиком на экране изображений, текстов или Web-страниц.

Современные модели мышей часто являются беспроводными - они подключаются к компьютеру без помощи кабеля, с помощью обычных батареек.

В портативных компьютерах вместо мыши используется сенсорная панель тачпад (от английского слова TouchPad), которая представляет собой панель прямоугольной формы, чувствительную к перемещению пальца и нажатию пальцем. Перемещение пальца по поверхности сенсорной панели преобразуется в перемещение курсора на экране монитора. Нажатие на поверхность сенсорной панели эквивалентно нажатию на кнопку мыши.

5. Структурная схема и устройство ПК

Основным устройством ПК является материнская плата, которая определяет его конфигурацию. Все устройства ПК подключаются к этой плате с помощью разъемов расположенных на этой плате. Соединение всех устройств в единую систему обеспечивается с помощью системной магистрали (шины), представляющей собой линии передачи данных, адресов и управления.

Ядро ПК образуют процессор (центральный микропроцессор) и основная память, состоящая из оперативной памяти и постоянного запоминающего устройства (ПЗУ) или перепрограммируемого постоянного запоминающего устройства ППЗУ. ПЗУ предназначается для записи и постоянного хранения данных.

Подключение всех внешних устройств: клавиатуры, монитора, внешних ЗУ, мыши, принтера и т.д. обеспечивается через контроллеры,адаптеры, карты.

Контроллеры, адаптеры или карты имеют свой процессор и свою память, т.е. представляют собой специализированный процессор.

Микропроцессор .

Центральный микропроцессор (небольшая микросхема, выполняющая все вычисления и обработку информации) - это ядро ПК. В компьютерах типа IBM PC используются микропроцессоры фирмы Intel и совместимые с ними микропроцессоры других фирм.

Компоненты микропроцессора:

· АЛУ выполняет логические и арифметические операции

· Устройство управления управляет всеми устройствами ПК

· Регистры используются для хранения данных и адресов

· Схема управления шиной и портами - осуществляет подготовку устройств к обмену данными между микропроцессором и портом ввода - вывода, а также управляет шиной адреса и управления.

· Основные характеристики процессора:

· Разрядность - число двоичных разрядов, одновременно обрабатываемых при выполнении одной команды. Большинство современных процессоров - это 32 - разрядные процессоры, но выпускаются и 64 - разрядные процессоры.

· Тактовая частота - количество циклов работы устройства за единицу времени. Чем выше тактовая частота, тем выше производительность.

· Наличие встроенного математического сопроцессора

· Наличие и размер Кэш- памяти.

· Оперативная память

Оперативное запоминающее устройство (ОЗУ или RAM) - область памяти, предназначенная для хранения информации в течение одного сеанса работы с компьютером. Конструктивно ОЗУ выполнено в виде интегральных микросхем.

Из нее процессор считывает программы и исходные данные для обработки в свои регистры, в нее записывает полученные результаты. Название “оперативная” эта память получила потому, что она работает очень быстро, в результате процессору не приходится ждать при чтении или записи данных в память.

Однако быстродействие ОЗУ ниже быстродействия регистров процессора, поэтому перед выполнением команд процессор переписывает данные из ОЗУ в регистры. По принципу действия различают динамическую память и статическую.

Ячейки динамической памяти представляют собой микроконденсаторы, которые накапливают заряд на своих обкладках. Ячейки статической памяти представляют собой триггеры, которые могут находиться в двух устойчивых состояниях.

Основные параметры, которые характеризуют ОЗУ - это емкость и время обращения к памяти. ОЗУ типа DDR SDRAM (синхронная память с двойной скорость передачи данных) считается наиболее перспективной для ПК.

Кэш-память

Компьютеру необходимо обеспечить быстрый доступ к оперативной памяти, иначе микропроцессор будет простаивать, и быстродействие компьютера уменьшится. Поэтому современные компьютеры оснащаются Кэш-памятью или сверхоперативной памятью.

При наличии Кэш-памяти данные из ОЗУ сначала переписываются в нее, а затем в регистры процессора. При повторном обращении к памяти сначала производится поиск нужных данных в Кэш-памяти и необходимые данные из Кэш-памяти переносятся в регистры, поэтому повышается быстродействие.

Контроллеры

Только та информация, которая хранится в ОЗУ, доступна процессору для обработки. Поэтому необходимо, чтобы в его оперативной памяти находились программа и данные.

В ПК информация с внешних устройств (клавиатуры, жесткого диска и т.д.) пересылается в ОЗУ, а информация (результаты выполнения программ) с ОЗУ также выводится на внешние устройства (монитор, жесткий диск, принтер и т.д.).

Таким образом, в компьютере должен осуществляться обмен информацией (ввод-вывод) между оперативной памятью и внешними устройствами. Устройства, которые осуществляют обмен информацией между оперативной памятью и внешними устройствами называются контроллерами или адаптерами, иногда картами. Контроллеры, адаптеры или карты имеют свой процессор и свою память, т.е. представляют собой специализированный процессор.

Контроллеры или адаптеры (схемы, управляющие внешними устройствами компьютера) находятся на отдельных платах, которые вставляются в унифицированные разъемы (слоты) на материнской плате

Системная магистраль.

Системная магистраль (шина) - это совокупность проводов и разъемов, обеспечивающих объединение всех устройств ПК в единую систему и их взаимодействие.

Для подключения контроллеров или адаптеров современные ПК снабжены такими слотами как PCI. Слоты PCI - E Express для подключения новых устройств к более скоростной шине данных. Слоты AGP предназначены для подключения видеоадаптера

Для подключения накопителей (жестких дисков и компакт-дисков) используются интерфейсы IDE и SCSI. Интерфейс - это совокупность средств соединения и связи устройств компьютера.

Подключение периферийных устройств (принтеры, мышь, сканеры и т.д.) осуществляется через специальные интерфейсы, которые называются портами. Порты устанавливаются на задней стенке системного блока.

Слоты (разъемы) расширения конфигурации ПК предназначены для подключения дополнительных устройств к основной шине данных компьютера. К основным платам расширения, предназначенным для подключения к шине дополнительных устройств, относятся:

· Видеоадаптеры (видеокарты)

· Звуковые платы

· Внутренние модемы

· Сетевые адаптеры (для подключения к локальной сети)

· SCSI - адаптеры

Внешняя память. Классификация накопителей

Для хранения программ и данных в ПК используются накопители различных типов. Накопители - это устройства для записи и считывания информации с различных носителей информации. Различают накопители со сменным и встроенным носителем.

По типу носителя информации накопители разделяются на накопители на магнитных лентах и дисковые накопители. К накопителям на магнитных лентах относятся стримеры и др. Более широкий класс накопителей составляют дисковые накопители.

По способу записи и чтения информации на носитель дисковые накопители разделяются на магнитные, оптические и магнитооптические.

К дисковым накопителям относятся:

· накопители на флоппи-дисках;

· накопители на несменных жестких дисках (винчестеры);

· накопители на сменных жестких дисках;

· накопители на магнитооптических дисках;

· накопители на оптических дисках (CD-R CD-RW CD-ROM) с однократно записью и

· накопители на оптических DVD - дисках (DVD-R DVD-RW DVD-ROM и др.)

Дополнительные устройства

Периферийные устройства - это устройства, которые подключаются к контроллерам ПК и расширяют его функциональные возможности

По назначению дополнительные устройства разделяются на:

· устройства ввода (трэкболлы, джойстики, световые перья, сканеры, цифровые камеры, диджитайзеры)

· устройства вывода (плоттеры или графопостроители)
устройства хранения (стримеры, zip - накопители, магнитооптические накопители, накопители HiFD и др.)

· устройства обмена (модемы)

6. Представление информации в компьютере, единицы измерения информации

В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.

Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование. Кодирование - это преобразование данных одного типа через данные другого типа. В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binary digit - сокращенно bit).
Таким образом, единицей информации в компьютере является один бит, т.е. двоичный разряд, который может принимать значение 0 или 1. Восемь последовательных бит составляют байт. В одном байте можно закодировать значение одного символа из 256 возможных (256 = 2 в степени 8). Более крупной единицей информации является килобайт (Кбайт), равный 1024 байтам (1024 = 2 в степени 10). Еще более крупные единицы измерения данных: мегабайт, гигабайт, терабайт (1 Мбайт = 1024 Кбайт; 1 Гбайт = 1024 Мбайт; 1 Тбайт = 1024 Гбайт).

Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода.

Например, для представления текстовой информации используется таблица нумерации символов или таблица кодировки символов, в которой каждому символу соответствует целое число (порядковый номер). Восемь двоичных разрядов могут закодировать 256 различных символов.

Существующий стандарт ASCII (8 - разрядная система кодирования) содержит две таблицы кодирования - базовую и расширенную. Первая таблица содержит 128 основных символов, в ней размещены коды символов английского алфавита, а во второй таблице кодирования содержатся 128 расширенных символов.

Так как в этот стандарт не входят символы национальных алфавитов других стран, то в каждой стране 128 кодов расширенных символов заменяются символами национального алфавита. В настоящее время существует множество таблиц кодировки символов, в которых 128 кодов расширенных символов заменены символами национального алфавита.

Так, например, кодировка символов русского языка Widows - 1251 используется для компьютеров, которые работают под ОС Windows. Другая кодировка для русского языка - это КОИ - 8, которая также широко используется в компьютерных сетях и российском секторе Интернет.

В настоящее время существует универсальная система UNICODE, основанная на 16 - разрядном кодировании символов. Эта 16 - разрядная система обеспечивает универсальные коды для 65536 различных символов, т.е. в этой таблице могут разместиться символы языков большинства стран мира.

Для кодирования графических данных применяется, например, такой метод кодирования как растр. Координаты точек и их свойства описываются с помощью целых чисел, которые кодируются с помощью двоичного кода. Так черно-белые графические объекты могут быть описаны комбинацией точек с 256 градациями серого цвета, т.е. для кодирования яркости любой точки достаточно 8 - разрядного двоичного числа.

Режим представления цветной графики в системе RGB с использованием 24 разрядов (по 8 разрядов для каждого из трех основных цветов) называется полноцветным. Для полноцветного режима в системе CMYK необходимо иметь 32 разряда (четыре цвета по 8 разрядов).

Выводы

История развития ПК состоит из 5 этапов:

· Первое поколение ЭВМ (1948-1958)

· Второе поколение ЭВМ(1959-1967)

· Третье поколение ЭВМ(1968-1973)

· Четвертое поколение ЭВМ(1974-1982)

· Пятое поколение ЭВМ

Каждое следующее поколение ЭВМ имеет по сравнению с предыдущими существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличивается, как правило, больше чем на порядок.

Развитие ПК привело к более быстрому и легкому способу обработки информации. Компьютеры стали доступными для каждого человека,а не только для отдельного круга людей. Облегчилась работа всех слоев общества.

· Устройства ПК:

· Системный блок

· Клавиатура

· Монитор

В наше время к устройствам ПК так же относятся колонки (для воспроизведения звука), принтер, сканер, веб-камеры и другое.

Список использованной литературы

1. Угринович Н. Д. Практикум по информатике и информационным технологиям. - Бином.Лаборатория знаний,2004 - 106 стр.

2. Цветкова А.В. Информатика и информационные технологии, 2008 - 228 стр.

Размещено на Allbest.ur

Подобные документы

    Сферы применения персонального компьютера (ПК). Основные блоки ПК, способы компьютерной обработки информации. Устройства ввода и вывода, хранения информации: системный блок, клавиатура, монитор, мышь, сканер, дигитайзер, принтер, дисковый накопитель.

    презентация , добавлен 25.02.2011

    Обработка информации компьютерами. Средства преобразования информации в цифровую форму и обратно. Основные устройства компьютера: системный блок, жесткий диск, материнская плата. Устройства ввода и вывода информации: клавиатура и манипулятор мышь.

    курсовая работа , добавлен 25.11.2010

    Анализ особенностей работы специальных устройств для ввода информации в память компьютера. Клавиатура – устройство позволяющее вводить числовую и текстовую информацию. Виды манипуляторов: мышь, трекбол, джойстик. Устройства для ввода цифровой информации.

    курсовая работа , добавлен 14.04.2013

    Функции основных компонентов компьютера: системный блок, клавиатура, манипулятор "мышь", монитор. Назначение содержимого системного блока, свойства исходных материалов. Характеристика и принципы работы жидкокристаллических и плазменных мониторов.

    контрольная работа , добавлен 10.10.2009

    Тенденции развития вычислительной техники. Важнейшие характеристики рабочего места и санитарно-гигиенические нормы. Техника безопасности при работе на персональном компьютере, его устройство и программное обеспечение. Будущее накопителей информации.

    презентация , добавлен 12.07.2011

    Характеристика информации. Перевод числа из двоичной системы в десятичную, шестнадцатеричную и восьмеричную. Способы оценки количества информации. Технические средства обработки информации. Принцип работы, история изобретения струйного принтера.

    контрольная работа , добавлен 22.10.2012

    Классификация персональных компьютеров (ПК) по степени специализации, архитектуре процессора и др. Основные структурные элементы ПК: системный блок, монитор, мышь, клавиатура, внешние устройства. Дополнительные устройства, подключаемые к компьютерам.

    презентация , добавлен 11.07.2017

    Виды информации, с которыми работают современные компьютеры. Понятие "информация": в физике, в биологии, в кибернетике. Представление информации. Кодирование и каналы передачи информации. Локальные компьютерные сети. Хранение информации в файлах.

    контрольная работа , добавлен 13.01.2008

    Информационная безопасность, её цели и задачи. Каналы утечки информации. Программно-технические методы и средства защиты информации от несанкционированного доступа. Модель угроз безопасности информации, обрабатываемой на объекте вычислительной техники.

    дипломная работа , добавлен 19.02.2017

    Компоненты персонального компьютера: блок питания, материнская плата, устройство процессора, оперативной памяти, видео и звуковой карты, сетевого адаптера и жесткого диска. Съемные носители информации. Монитор, клавиатура и мышь. Периферийные устройства.

При проектировании технологических процессов ориентируются на режимы их реализации. Режим реализации технологии зависит от объемно-временных особенностей решаемых задач: периодичности и срочности, требований к быстроте обработки сообщений, а также от режимных возможностей технических средств, и в первую очередь ЭВМ. Существуют: пакетный режим; режим реального масштаба времени; режим разделения времени; регламентный режим; запросный; диалоговый; телеобработки; интерактивный; однопрограммный; многопрограммный (мультиобработка).

Пакетный режим . При использовании этого режима пользователь не имеет непосредственного общения с ЭВМ. Сбор и регистрация информации, ввод и обработка не совпадают по времени. Вначале пользователь собирает информацию, формируя ее в пакеты в соответствии с видом задач или каким-то др. признаком. (Как правило, это задачи неоперативного характера, с долговременным сроком действия результатов решения). После завершения приема информации производится ее ввод и обработка, т.е., происходит задержка обработки. Этот режим используется, как правило, при централизованном способе обработки информации.

Диалоговый режим (запросный) режим, при котором существует возможность пользователя непосредственно взаимодействовать с вычислительной системой в процессе работы пользователя. Программы обработки данных находятся в памяти ЭВМ постоянно, если ЭВМ доступна в любое время, или в течение определенного промежутка времени, когда ЭВМ доступна пользователю. Взаимодействие пользователя с вычислительной системой в виде диалога может быть многоаспектным и определяться различными факторами: языком общения, активной или пассивной ролью пользователя; кто является инициатором диалога - пользователь или ЭВМ; временем ответа; структурой диалога и т.д. Если инициатором диалога является пользователь, то он должен обладать знаниями по работе с процедурами, форматами данных и т.п. Если инициатор - ЭВМ, то машина сама сообщает на каждом шаге, что нужно делать с разнообразными возможностями выбора. Этот метод работы называется “выбором меню”. Он обеспечивает поддержку действий пользователя и предписывает их последовательность. При этом от пользователя требуется меньшая подготовленность.

Диалоговый режим требует определенного уровня технической оснащенности пользователя, т.е. наличие терминала или ПЭВМ, связанных с центральной вычислительной системой каналами связи. Этот режим используется для доступа к информации, вычислительным или программным ресурсам. Возможность работы в диалоговом режиме может быть ограничена во времени начала и конца работы, а может быть и неограниченной.

Иногда различают диалоговый и запросный режимы, тогда под запросным понимается одноразовое обращение к системе, после которого она выдает ответ и отключается, а под диалоговым - режим, при которым система после запроса выдает ответ и ждет дальнейших действий пользователя.

Режим реального масштаба времени . Означает способность вычислительной системы взаимодействовать с контролируемыми или управляемыми процессами в темпе протекания этих процессов. Время реакции ЭВМ должно удовлетворять темпу контролируемого процесса или требованиям пользователей и иметь минимальную задержку. Как правило, этот режим используется при децентрализованной и распределенной обработке данных.

Режим телеобработки дает возможность удаленному пользователю взаимодействовать с вычислительной системой.

Интерактивный режим предполагает возможность двустороннего взаимодействия пользователя с системой, т.е. у пользователя есть возможность воздействия на процесс обработки данных.

Режим разделения времени предполагает способность системы выделять свои ресурсы группе пользователей поочередно. Вычислительная система настолько быстро обслуживает каждого пользователя, что создается впечатление одновременной работы нескольких пользователей. Такая возможность достигается за счет соответствующего программного обеспечения.

Однопрограммный и многопрограммный режимы характеризуют возможность системы работать одновременно по одной или нескольким программам.

Регламентный режим характеризуется определенностью во времени отдельных задач пользователя. Например, получение результатных сводок по окончании месяца, расчет ведомостей начисления зарплаты к определенным датам и т.д. Сроки решения устанавливаются заранее по регламенту в противоположность к произвольным запросам.

Различаются следующие способы обработки данных: централизованный, децентрализованный, распределенный и интегрированный.

Централизованная предполагает наличие. При этом способе пользователь доставляет на ВЦ исходную информацию и получают результаты обработки в виде результативных документов. Особенностью такого способа обработки являются сложность и трудоемкость налаживания быстрой, бесперебойной связи, большая загруженность ВЦ информацией (т.к. велик ее объем), регламентацией сроков выполнения операций, организация безопасности системы от возможного несанкционированного доступа.

Децентрализованная обработка. Этот способ связан с появлением ПЭВМ, дающих возможность автоматизировать конкретное рабочие место.

Распределенный способ обработки данных основан на распределении функций обработки между различными ЭВМ, включенными в сеть. Этот способ может быть реализован двумя путями: первый предполагает установку ЭВМ в каждом узле сети (или на каждом уровне системы), при этом обработка данных осуществляется одной или несколькими ЭВМ в зависимости от реальных возможностей системы и ее потребностей на текущий момент времени. Второй путь - размещение большого числа различных процессоров внутри одной системы. Такой путь применяется в системах обработки банковской и финансовой информации, там, где необходима сеть обработки данных (филиалы, отделения и т.д.). Преимущества распределенного способа: возможность обрабатывать в заданные сроки любой объем данных; высокая степень надежности, так как при отказе одного технического средства есть возможность моментальной замены его на другой; сокращение времени и затрат на передачу данных; повышение гибкости систем, упрощение разработки и эксплуатации программного обеспечения и т.д. Распределенный способ основывается на комплексе специализированных процессоров, т.е. каждая ЭВМ предназначена для решения определенных задач, или задач своего уровня.

Интегрированный способ обработки информации. Он предусматривает создание информационной модели управляемого объекта, то есть создание распределенной базы данных. Такой способ обеспечивает максимальное удобство для пользователя. С одной стороны, базы данных предусматривают коллективное пользование и централизованное управление. С другой стороны, объем информации, разнообразие решаемых задач требуют распределения базы данных. Технология интегрированной обработки информации позволяет улучшить качество, достоверность и скорость обработки, т.к. обработка производится на основе единого информационного массива, однократно введенного в ЭВМ. Особенностью этого способа является отделение технологически и по времени процедуры обработки от процедур сбора, подготовки и ввода данных.

Комплекс технических средств обработки информации – это совокупность автономных устройств сбора, накопления, передачи, обработки и представления информации, а также средств оргтехники, управления, ремонтно-профилактических и других. К комплексу технических средств предъявляют ряд требований:

Обеспечение решения задач с минимальными затратами, необходимой точности и достоверности

Возможность технической совместимости устройств, их агрегативность

Обеспечение высокой надежности

Минимальные затраты на приобретения

Отечественной и зарубежной промышленностью выпускается широкая номенклатура технических средств обработки информации, различающихся элементной базой, конструктивным исполнением, использованием различных носителей информации, эксплуатационными характеристиками и др.

Технические средства обработки информации делятся на две большие группы. Это основные и вспомогательные средства обработки.

Вспомогательные средства – это оборудование, обеспечивающее работоспособность основных средств, а также оборудование, облегчающее и делающее управленческий труд комфортнее. К вспомогательным средствам обработки информации относятся средства оргтехники и ремонтно-профилактические средства. Оргтехника представлена весьма широкой номенклатурой средств, от канцелярских товаров, до средств доставления, размножения, хранения, поиска и уничтожения основных данных, средств административно производственной связи и так далее, что делает работу управленца удобной и комфортной.

Основные средства – это орудия труда по автоматизированной обработке информации. Известно, что для управления теми или иными процессами необходима определенная управленческая информация, характеризующая состояния и параметры технологических процессов, количественные, стоимостные и трудовые показатели производства, снабжения, сбыта, финансовой деятельности и т.п. К основным средствам технической обработки относятся: средства регистрации и сбора информации, средства приема и передачи данных, средства подготовки данных, средства ввода, средства обработки информации и средства отображения информации. Ниже, все эти средства рассмотрены подробно.

Получение первичной информации и регистрация является одним из трудоемких процессов. Поэтому широко применяютсяустройства для механизированного и автоматизированного измерения, сбора и регистрации данных. Номенклатура этих средств весьма обширна. К ним относят: электронные весы, разнообразные счетчики, табло, расходомеры, кассовые аппараты, машинки для счета банкнот, банкоматы и многое другое. Сюда же относят различные регистраторы производства, предназначенные для оформления и фиксации сведений о хозяйственных операциях на машинных носителях.

Средства приема и передачи информации. Под передачей информации понимается процесс пересылки данных (сообщений) от одного устройства к другому. Взаимодействующая совокупность объектов, образуемые устройства передачи и обработки данных, называется сетью.Объединяют устройства, предназначенные для передачи и приема информации. Они обеспечивают обмен информацией между местом её возникновения и местом её обработки. Структура средств и методов передачи данных определяется расположением источников информации и средств обработки данных, объемами и временем на передачу данных, типами линий связи и другими факторами. Средства передачи данных представлены абонентскими пунктами (АП), аппаратурой передачи, модемами, мультиплексорами.

Средства подготовки данных представлены устройствами подготовки информации на машинных носителях, устройства для передачи информации с документов на носители, включающие устройства ЭВМ. Эти устройства могут осуществлять сортировку и корректирование.

Средства ввода служат для восприятия данных с машинных носителей и ввода информации в компьютерные системы

Средства обработки информации играют важнейшую роль в комплексе технических средств обработки информации. К средствам обработки можно отнести компьютеры, которые в свою очередь разделим на четыре класса: микро, малые (мини); большие и суперЭВМ. Микро ЭВМ бывают двух видов: универсальные и специализированные.

И универсальные и специализированные могут быть как многопользовательскими - мощные ЭВМ, оборудованные несколькими терминалами и функционирующие в режиме разделения времени (серверы), так и однопользовательскими (рабочие станции), которые специализируются на выполнении одного вида работ.

Малые ЭВМ – работают в режиме разделения времени и в многозадачном режиме. Их положительной стороной является надежность и простота в эксплуатации.

Большие ЭВМ – (мейнфермы) характеризуются большим объемом памяти, высокой отказоустойчивостью и производительностью. Также характеризуется высокой надежностью и защитой данных; возможностью подключения большого числа пользователей.

Супер-ЭВМ – это мощные многопроцессорные ЭВМ с быстродействием 40 млрд. операций в секунду.

Сервер - компьютер, выделенный для обработки запросов от всех станций сети и представляющий этим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Универсальный сервер называется - сервер-приложение. Мощные серверы можно отнести к малым и большим ЭВМ. Сейчас лидером являются серверы Маршалл, а также существуют серверы Cray (64 процессора).

Средства отображения информации используют для вывода результатов вычисления, справочных данных и программ на машинные носители, печать, экран и так далее. К устройствам вывода можно отнести мониторы, принтеры и плоттеры.

Монитор – это устройство, предназначенное для отображения информации, вводимой пользователем с клавиатуры или выводимой компьютером.

Принтер – это устройство вывода на бумажный носитель текстовой и графической информации.

Плоттер – это устройство вывода чертежей и схем больших форматов на бумагу.

Технология - это комплекс научных и инженерных знаний, реализованных в приемах труда, наборах материальных, технических, энергетических, трудовых факторов производства, способах их соединения для создания продукта или услуги, отвечающих определенным требованиям. Поэтому технология неразрывно связана с машинизацией производственного или непроизводственного, прежде всего управленческого процесса. Управленческие технологии основываются на применении компьютеров и телекоммуникационной техники.

Согласно определению, принятому ЮНЕСКО, информационная технология - это комплекс взаимосвязанных, научных, технологических и инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием. Их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами информационные технологии требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их введение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.

Целью информационной технологии управления является удовлетворение информацион­ных потребностей всех без исключения сотрудников фирмы, имеющих дело с принятием решений. Она может быть полезна на любом уровне управления.

Эта технология ориентирована на работу в среде информационной системы управления и используется при худшей структурированности решаемых задач, если их сравнивать с задачами, решаемыми с помощью информационной технологии обработки данных.

Информационная технология управления идеально подходит для удовлетворения сходных информационных потребностей работников различных функциональных подсистем (подразделений) или уров­ней управления фирмой. Поставляемая ими информация содержит сведения о прошлом, настоящем и вероятном будущем фирмы. Эта информация имеет вид регулярных или спе­циальных управленческих отчетов.

Для принятия решений на уровне управленческого контроля информация должна быть представлена в агрегированном виде, так, чтобы просматривались тенденции изменения данных, причины возникших отклонений и возможные решения. На этом этапе решаются следующие задачи обработки данных:

· оценка планируемого состояния объекта управления;

· оценка отклонений от планируемого состояния;

· выявление причин отклонений;

· анализ возможных решений и действий.

Информационная технология управления направлена на создание различных видов отчетов.

Регулярные отчеты создаются в соответствии с установленным графиком, опре­деляющим время их создания, например месячный анализ продаж компании.

Специальные отчеты создаются по запросам управленцев или когда в компании произошло что-то незапланированное. И те, и другие виды отчетов могут иметь форму суммирующих, сравнительных и чрезвычайных отчетов.

В суммирующих отчетах данные объединены в отдельные группы, отсортирова­ны и представлены в виде промежуточных и окончательных итогов по отдельным полям.

Сравнительные отчеты содержат данные, полученные из различных источников или классифицированные по различным признакам и используемые для целей сравнения.

Чрезвычайные отчеты содержат данные исключительно (чрезвычайного) характера.

Использование отчетов для поддержки управления оказывается особенно эффектив­ным при реализации так называемого управления, но отклонениям. Управление по отклонениям предполагает, что главным содержанием получаемых менеджером данных должны являться отклонения состояния хозяйственной деятельности фирмы от некоторых установленных стандартов (например, от ее запланированного состоя­ния). При использовании на фирме принципов управления по отклонениям к создаваемым отчетам предъявляются следующие требования:

· отчет должен создаваться только тогда, когда отклонение произошло

· сведения в отчете должны быть отсортированы по значению критического для данно­го отклонения показателя;

· все отклонения желательно показать вместе, чтобы менеджер мог уловить существую­щую между ними связь;

· в отчете необходимо показать, количественное отклонение от нормы.

Основные компоненты

Входная информация поступает из систем операционного уровня. Выходная информация формируется в виде управленческих отчетов в удобном для принятия решения виде. Содержимое базы данных при помощи соответствующего программного обеспечения преобразуется в периодические и специальные отчеты, поступающие к специалистам, уча­ствующим в принятии решений в организации. База данных, используемая для получения указанной информации, должна состоять из двух элементов:

1) данных, накапливаемых на основе оценки операций, проводимых фирмой;

2) планов, стандартов, бюджетов и других нормативных документов, определяющих планируемое состояние объекта управления (подразделения фирмы).

При внедрении информационной технологии в фирму необходимо выбрать одну из двух ос­новных концепций, отражающих сложившиеся точки зрения на существующую структуру организации и роль в ней компьютерной обработки информации.

Первая концепция ориентируется на существующую структуру фирмы. Ин­формационная технология приспосабливается к организационной структуре, и происходит лишь модернизация методов работы. Коммуникации развиты слабо, рационализируются только рабочие места. Происходит распределение функций между техническими работни­ками и специалистами. Степень риска от внедрения новой информационной технологии ми­нимальна., так как затраты незначительны и организационная структура фирмы не меняется.

Основной недостаток такой стратегии - необходимость непрерывных измене­ний формы представления информации, приспособленной к конкретным технологическим методам и техническим средствам. Любое оперативное решение “вязнет” на различных эта­пах информационной технологии.

К достоинствам стратегии можно отнести минимальные степень риска и затраты.

Вторая концепци я ориентируется на будущую структуру фирмы. Существую­щая структура будет модернизироваться.

Данная стратегия предполагает максимальное развитие коммуникаций и разработку новых организационных взаимосвязей. Продуктивность организационной структуры фирмы возрастает, так как рационально распределяются архивы данных, снижается объем циркулирующей по системным каналам информации и достигается сбалансированность между решаемыми задачами.

К основным ее недостаткам следует отнести:

· существенные затраты на первом этапе, связанном с разработкой общей концепции и обследованием всех подразделений фирмы;

· наличие психологической напряженности, вызванной предполагаемыми изменениями структуры фирмы и, как следствие, изменениями штатного расписания и должност­ных обязанностей

Достоинствами данной стратегии являются:

· рационализация организационной структуры фирмы;

· максимальная занятость всех работников;

· высокий профессиональный уровень;

· интеграция профессиональных функций за счет использования компьютерных сетей.

Новая информационная технология в фирме должна быть такой, чтобы уровни инфор­мации и подсистемы, ее обрабатывающие, связывались между собой единым массивом ин­формации. При этом предъявляются два требования. Во-первых, структура системы переработки информации должна соответствовать распределению полномочий в фирме. Во-вторых, информация внутри системы должна функционировать так, чтобы достаточно полно отражать уровни управления.

Для поддержки новых хозяйственных механизмов должны быть разработаны адекватные рыночным отношениям НИТ. В частности, в современных условиях изменениям подвергаются банковская и инвестиционная деятельность, совершенствуется налогообложение, появляются новые виды управленческой деятельности и субъекты рынка, что требует эффективных прикладных информационных технологий.

Банковские системы. Развитие и совершенствование банковских структур порождает потребность в новых услугах финансовых учреждений. Децентрализация банковской системы ведет к принципиально новой организации, требующей разработки концепции комплексной информатизации отдельных учреждений для повышения эффективности их собственного функционирования, а также для взаимодействия между собой, с ЦБ РФ и с зарубежными партнерами. Банковские информационные технологии должны обеспечивать достаточную оперативность при организации расчетов. Кроме того, эта сфера банковской деятельности наиболее трудоемка, содержит большой объем вычислений и характеризуется как рутинная.

Применение имитационного моделирования для построения банковских технологий - один из наиболее перспективных подходов к решению стратегических проблем. Банкир может имитировать финансовые показатели банка, оценивать эффективность и последствия принимаемых решений и таким образом определять свою политику на финансовом рынке. К этому направлению тесно примыкает разработка экспертных систем, ориентированных как на клиентов банка, так и на банковских специалистов.

Чрезвычайно важным вопросом информатизации банковской деятельности остается организация связи между банками России. Существующая бумажная технология обычно требует 2-3 дней для перевода денег. При этом задержка может быть обусловлена как самой формой организации расчетов, так и состоянием коммуникаций. Внедрение НИТ может способствовать выходу из этого кризиса. Поскольку самостоятельно разрабатываемые и модернизируемые программные комплексы стоят слишком дорого, усиливается роль организаций, специализирующихся в области банковских технологий и способных решать банковские проблемы комплексно. Появившиеся продукты, называемые “банковскими платформами”, дающие, с точки зрения единой унифицированной функциональной базы, общее решение всех банковских задач, будут определять стандарты качества и функциональные возможности автоматизированных систем обработки банковской информации.

Биржевые технологии. Опыт показал, что проектирование биржевых компьютерных комплексов - это логически сложная, трудоемкая и длительная по времени работа, требующая высокой квалификации всех участвующих в ее выполнении специалистов. Проектирование таких комплексов традиционно основывается на интуиции, экспертных оценках, дорогостоящих экспериментальных проверках функционирования комплекса и практическом опыте. Кроме того, с ростом числа пользователей биржевой технологии усиливается роль высокой производительности ее функционирования, которая существенно зависит от идеологии проектирования.

Внедрение современных биржевых информационных технологий в практику должно способствовать повышению экономической эффективности работы биржи за счет расширения сферы ее деятельности по регионам страны, ускорения оборачиваемости оборотных средств, вовлечения в биржевой процесс массовых поставщиков, посредников и покупателей, обеспечения возможности активного совершения не только крупномасштабных, но и средне- и мало масштабных сделок в массовом количестве, автоматизации трудоемких и продолжительных рутинных процессов, сбора н анализа заявок от брокерских фирм на покупку-продажу компьютерным способом, проведения автоматизированных торгов (расчет курса, заключение сделок, оформление торговых контрактов и проведение клиринговых расчетов) по единым правилам, обеспечивающим защиту интересов инвестора, равные права всех участников торгов и т.п.

Технологии менеджмента. В условиях рынка новым содержанием наполняются все процедуры производственного менеджмента. Любое производство связано с потоками как внутренней, так и внешней информации. Среди многообразия поступающих сведений менеджеру для принятия решения нужны лишь строго определенные, а все остальные представляют собой информационный шум. Кроме того, большая часть информации возникает не там, где в ней нуждаются, поэтому для успешного решения возникающих задач большое значение приобретает умение преодолеть эту дистанцию. Разрешение проблемы коммуникации оказывает влияние на скорость поступления информации и ее своевременность, что способствует более эффективной работе предприятия. Этот далеко не полный круг проблем выявляет необходимость построения специальной управляющей информационной системы, которая способствует их оптимальному решению. В настоящее время существует два основных подхода к построению таких систем. Это МIS-системы (ManagementInformationSystems), которые к нужному моменту времени в "наиболее удобной форме с учетом общепринятого принципа экономичности предоставляют необходимую для менеджера информацию о прошлом, настоящем и будущем в соответствии с возникшей ситуацией. Второй подход базируется на DSS-системах (DecisionSupportSystems), которые ориентированы на интеллектуальное обеспечение процессов принятия решений и ставят своей целью поддержку принимаемых решений.

Принцип избирательного распределения информации предполагает систематизацию информации в соответствии со следующими требованиями:

· информация должна соответствовать уровню управления, что выражается в ее укрупнении и уплотнении при продвижении от нижнего к верхнему уровню;

· информация должна отвечать характеру менеджмента и соответствовать совокупности целей управления, т.е. для каждого уровня управления предоставляется информация, позволяющая выполнить все функции процесса управления. Например, на стадии анализа используются не только текущие, но и прошлые и прогнозные данные, выполняется сравнение фактических величин с плановыми и выявляются причины возникших отклонении.

Технологии маркетинга. Комплексное изучение информационных потоков маркетинга требует анализа крупных массивов сведений коммерческого и статистического характера. Маркетинговая информационная технология - это совокупность процедур и методов, предназначенных для организации перспективных и текущих маркетинговых исследований.

Налоговые информационные системы. Преобразование налоговой системы вызывает необходимость в модификации, а порой и в кардинальной перестройке соответствующих информационных технологий. Поскольку налоговая система современной России не имеет аналогов, то в решении проблемы информатизации деятельности налоговых служб не приходится рассчитывать на заимствование зарубежной программно-математической продукции. Поэтому, если для реализации официальной налоговой политики и созданы эффективные технологии сбора и обработки необходимой информации, то такая политика, какой бы удачной и перспективной она ни была, обречена на неуспех. Идеологам реформ, желающим путем справедливого распределения налогового бремени стимулировать производство и накопление капитала, необходимо четко представлять возможности НИТ.

Среди главных направлений концепции информатизация налоговой системы целесообразно выделить:

· создание единой комплексной информационно-аналитической системы, предназначенной для обслуживания налоговых служб;

· разработку современной коммуникационной сети, обеспечивающей информационный обмен как внутри системы, так и с внешними объектами;

· подготовку кедров в новой информационной среде.

В качестве основных принципов информатизации налоговых служб предложены:

· комплексность и системность информатизации, ее подчиненность решению задач, стоящих перед налоговой службой в настоящее время и на перспективу;

· активность в обеспечении информационных потребностей пользователей;

· поэтапность и преемственность в проведении информатизации;

· распределенность хранения и обработки информации;

· совместимость общесистемных и специализированньк банков данных по входу, выходу и базовым задачам;

· предоставление пользователю удобного доступа к информации в пределах его компетенции; одноразовый ввод информации и многократное, многоцелевое ее использование; обеспечение требуемой конфиденциальности информации

1 Режимы обработки данных

При проектировании технологических процессов ориентируются на режимы их реализации. Режим реализации технологии зависит от объемно-временных особенностей решаемых задач: периодичности и срочности, требований к быстроте обработки сообщений, а также от режимных возможностей технических средств, и в первую очередь ЭВМ. Существуют: пакетный режим; режим реального масштаба времени; режим разделения времени; регламентный режим; запросный; диалоговый; телеобработки; интерактивный; однопрограммный; многопрограммный (мультиобработка).

Пакетный режим. При использовании этого режима пользователь не имеет непосредственного общения с ЭВМ. Сбор и регистрация информации, ввод и обработка не совпадают по времени. Вначале пользователь собирает информацию, формируя ее в пакеты в соответствии с видом задач или каким-то др. признаком. (Как правило, это задачи неоперативного характера, с долговременным сроком действия результатов решения). После завершения приема информации производится ее ввод и обработка, т.е., происходит задержка обработки. Этот режим используется, как правило, при централизованном способе обработки информации.

Диалоговый режим (запросный) режим, при котором существует возможность пользователя непосредственно взаимодействовать с вычислительной системой в процессе работы пользователя. Программы обработки данных находятся в памяти ЭВМ постоянно, если ЭВМ доступна в любое время, или в течение определенного промежутка времени, когда ЭВМ доступна пользователю. Взаимодействие пользователя с вычислительной системой в виде диалога может быть многоаспектным и определяться различными факторами: языком общения, активной или пассивной ролью пользователя; кто является инициатором диалога - пользователь или ЭВМ; временем ответа; структурой диалога и т.д. Если инициатором диалога является пользователь, то он должен обладать знаниями по работе с процедурами, форматами данных и т.п. Если инициатор - ЭВМ, то машина сама сообщает на каждом шаге, что нужно делать с разнообразными возможностями выбора. Этот метод работы называется “выбором меню”. Он обеспечивает поддержку действий пользователя и предписывает их последовательность. При этом от пользователя требуется меньшая подготовленность.

Диалоговый режим требует определенного уровня технической оснащенности пользователя, т.е. наличие терминала или ПЭВМ, связанных с центральной вычислительной системой каналами связи. Этот режим используется для доступа к информации, вычислительным или программным ресурсам. Возможность работы в диалоговом режиме может быть ограничена во времени начала и конца работы, а может быть и неограниченной.



Иногда различают диалоговый и запросный режимы, тогда под запросным понимается одноразовое обращение к системе, после которого она выдает ответ и отключается, а под диалоговым - режим, при которым система после запроса выдает ответ и ждет дальнейших действий пользователя.

Режим реального масштаба времени. Означает способность вычислительной системы взаимодействовать с контролируемыми или управляемыми процессами в темпе протекания этих процессов. Время реакции ЭВМ должно удовлетворять темпу контролируемого процесса или требованиям пользователей и иметь минимальную задержку. Как правило, этот режим используется при децентрализованной и распределенной обработке данных.

Режим телеобработки дает возможность удаленному пользователю взаимодействовать с вычислительной системой.

Интерактивный режим предполагает возможность двустороннего взаимодействия пользователя с системой, т.е. у пользователя есть возможность воздействия на процесс обработки данных.

Режим разделения времени предполагает способность системы выделять свои ресурсы группе пользователей поочередно. Вычислительная система настолько быстро обслуживает каждого пользователя, что создается впечатление одновременной работы нескольких пользователей. Такая возможность достигается за счет соответствующего программного обеспечения.

Однопрограммный и многопрограммный режимы характеризуют возможность системы работать одновременно по одной или нескольким программам.

Регламентный режим характеризуется определенностью во времени отдельных задач пользователя. Например, получение результатных сводок по окончании месяца, расчет ведомостей начисления зарплаты к определенным датам и т.д. Сроки решения устанавливаются заранее по регламенту в противоположность к произвольным запросам.



2 Способы обработки данных

Различаются следующие способы обработки данных: централизованный, децентрализованный, распределенный и интегрированный.

Централизованная предполагает наличие. При этом способе пользователь доставляет на ВЦ исходную информацию и получают результаты обработки в виде результативных документов. Особенностью такого способа обработки являются сложность и трудоемкость налаживания быстрой, бесперебойной связи, большая загруженность ВЦ информацией (т.к. велик ее объем), регламентацией сроков выполнения операций, организация безопасности системы от возможного несанкционированного доступа.

Децентрализованная обработка. Этот способ связан с появлением ПЭВМ, дающих возможность автоматизировать конкретное рабочие место.

Распределенный способ обработки данных основан на распределении функций обработки между различными ЭВМ, включенными в сеть. Этот способ может быть реализован двумя путями: первый предполагает установку ЭВМ в каждом узле сети (или на каждом уровне системы), при этом обработка данных осуществляется одной или несколькими ЭВМ в зависимости от реальных возможностей системы и ее потребностей на текущий момент времени. Второй путь - размещение большого числа различных процессоров внутри одной системы. Такой путь применяется в системах обработки банковской и финансовой информации, там, где необходима сеть обработки данных (филиалы, отделения и т.д.). Преимущества распределенного способа: возможность обрабатывать в заданные сроки любой объем данных; высокая степень надежности, так как при отказе одного технического средства есть возможность моментальной замены его на другой; сокращение времени и затрат на передачу данных; повышение гибкости систем, упрощение разработки и эксплуатации программного обеспечения и т.д. Распределенный способ основывается на комплексе специализированных процессоров, т.е. каждая ЭВМ предназначена для решения определенных задач, или задач своего уровня.

Интегрированный способ обработки информации. Он предусматривает создание информационной модели управляемого объекта, то есть создание распределенной базы данных. Такой способ обеспечивает максимальное удобство для пользователя. С одной стороны, базы данных предусматривают коллективное пользование и централизованное управление. С другой стороны, объем информации, разнообразие решаемых задач требуют распределения базы данных. Технология интегрированной обработки информации позволяет улучшить качество, достоверность и скорость обработки, т.к. обработка производится на основе единого информационного массива, однократно введенного в ЭВМ. Особенностью этого способа является отделение технологически и по времени процедуры обработки от процедур сбора, подготовки и ввода данных.

3 Комплекс технических средств обработки информации

Комплекс технических средств обработки информации – это совокупность автономных устройств сбора, накопления, передачи, обработки и представления информации, а также средств оргтехники, управления, ремонтно-профилактических и других. К комплексу технических средств предъявляют ряд требований:

Обеспечение решения задач с минимальными затратами, необходимой точности и достоверности

Возможность технической совместимости устройств, их агрегативность

Обеспечение высокой надежности

Минимальные затраты на приобретения

Отечественной и зарубежной промышленностью выпускается широкая номенклатура технических средств обработки информации, различающихся элементной базой, конструктивным исполнением, использованием различных носителей информации, эксплуатационными характеристиками и др.

4 Классификация технических средств обработки информации

Технические средства обработки информации делятся на две большие группы. Это основные и вспомогательные средства обработки.

Вспомогательные средства – это оборудование, обеспечивающее работоспособность основных средств, а также оборудование, облегчающее и делающее управленческий труд комфортнее. К вспомогательным средствам обработки информации относятся средства оргтехники и ремонтно-профилактические средства. Оргтехника представлена весьма широкой номенклатурой средств, от канцелярских товаров, до средств доставления, размножения, хранения, поиска и уничтожения основных данных, средств административно производственной связи и так далее, что делает работу управленца удобной и комфортной.

Основные средства – это орудия труда по автоматизированной обработке информации. Известно, что для управления теми или иными процессами необходима определенная управленческая информация, характеризующая состояния и параметры технологических процессов, количественные, стоимостные и трудовые показатели производства, снабжения, сбыта, финансовой деятельности и т.п. К основным средствам технической обработки относятся: средства регистрации и сбора информации, средства приема и передачи данных, средства подготовки данных, средства ввода, средства обработки информации и средства отображения информации. Ниже, все эти средства рассмотрены подробно.

Получение первичной информации и регистрация является одним из трудоемких процессов. Поэтому широко применяются устройства для механизированного и автоматизированного измерения, сбора и регистрации данных. Номенклатура этих средств весьма обширна. К ним относят: электронные весы, разнообразные счетчики, табло, расходомеры, кассовые аппараты, машинки для счета банкнот, банкоматы и многое другое. Сюда же относят различные регистраторы производства, предназначенные для оформления и фиксации сведений о хозяйственных операциях на машинных носителях.

Средства приема и передачи информации. Под передачей информации понимается процесс пересылки данных (сообщений) от одного устройства к другому. Взаимодействующая совокупность объектов, образуемые устройства передачи и обработки данных, называется сетью. Объединяют устройства, предназначенные для передачи и приема информации. Они обеспечивают обмен информацией между местом её возникновения и местом её обработки. Структура средств и методов передачи данных определяется расположением источников информации и средств обработки данных, объемами и временем на передачу данных, типами линий связи и другими факторами. Средства передачи данных представлены абонентскими пунктами (АП), аппаратурой передачи, модемами, мультиплексорами.

Средства подготовки данных представлены устройствами подготовки информации на машинных носителях, устройства для передачи информации с документов на носители, включающие устройства ЭВМ. Эти устройства могут осуществлять сортировку и корректирование.

Средства ввода служат для восприятия данных с машинных носителей и ввода информации в компьютерные системы

Средства обработки информации играют важнейшую роль в комплексе технических средств обработки информации. К средствам обработки можно отнести компьютеры, которые в свою очередь разделим на четыре класса: микро, малые (мини); большие и суперЭВМ. Микро ЭВМ бывают двух видов: универсальные и специализированные.

И универсальные и специализированные могут быть как многопользовательскими - мощные ЭВМ, оборудованные несколькими терминалами и функционирующие в режиме разделения времени (серверы), так и однопользовательскими (рабочие станции), которые специализируются на выполнении одного вида работ.

Малые ЭВМ – работают в режиме разделения времени и в многозадачном режиме. Их положительной стороной является надежность и простота в эксплуатации.

Большие ЭВМ – (мейнфермы) характеризуются большим объемом памяти, высокой отказоустойчивостью и производительностью. Также характеризуется высокой надежностью и защитой данных; возможностью подключения большого числа пользователей.

Супер-ЭВМ – это мощные многопроцессорные ЭВМ с быстродействием 40 млрд. операций в секунду.

Сервер - компьютер, выделенный для обработки запросов от всех станций сети и представляющий этим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Универсальный сервер называется - сервер-приложение. Мощные серверы можно отнести к малым и большим ЭВМ. Сейчас лидером являются серверы Маршалл, а также существуют серверы Cray (64 процессора).

Средства отображения информации используют для вывода результатов вычисления, справочных данных и программ на машинные носители, печать, экран и так далее. К устройствам вывода можно отнести мониторы, принтеры и плоттеры.

Монитор – это устройство, предназначенное для отображения информации, вводимой пользователем с клавиатуры или выводимой компьютером.

Принтер – это устройство вывода на бумажный носитель текстовой и графической информации.

Плоттер – это устройство вывода чертежей и схем больших форматов на бумагу.

Технология - это комплекс научных и инженерных знаний, реализованных в приемах труда, наборах материальных, технических, энергетических, трудовых факторов производства, способах их соединения для создания продукта или услуги, отвечающих определенным требованиям. Поэтому технология неразрывно связана с машинизацией производственного или непроизводственного, прежде всего управленческого процесса. Управленческие технологии основываются на применении компьютеров и телекоммуникационной техники.

Согласно определению, принятому ЮНЕСКО, информационная технология - это комплекс взаимосвязанных, научных, технологических и инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием. Их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами информационные технологии требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их введение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.